Smoothed Analysis of Tensor Decompositions and Learning

Aravindan Vijayaraghavan

CMU ⇒ Northwestern University

based on joint works with

Aditya Bhaskara
Google Research

Moses Charikar
Princeton

Ankur Moitra
MIT
Factor analysis

Assumption: matrix has a “simple explanation”

- Sum of “few” rank one matrices ($k < d$)

\[
M = a_1 \otimes b_1 + a_2 \otimes b_2 + \cdots + a_k \otimes b_k
\]

Qn [Spearman]. Can we find the “desired” explanation?
The rotation problem

Any suitable “rotation” of the vectors gives a different decomposition

\[M = a_1 \otimes b_1 + a_2 \otimes b_2 + \cdots + a_k \otimes b_k \]

Often difficult to find “desired” decomposition.
Tensors

Multi-dimensional arrays

- A t dimensional array \equiv tensor of order $t \equiv t$-tensor
- Represent higher order correlations, partial derivatives, etc.
- Collection of matrix (or smaller tensor) slices
3-way factor analysis

Tensor can be written as a sum of few rank-one tensors

3-Tensors:

\[T = \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i \]

\(\text{Rank}(T) = \) smallest \(k \) s.t. \(T \) written as sum of \(k \) rank-1 tensors

- Rank of 3-tensor \(T_{d \times d \times d} \leq d^2 \). Rank of \(t \)-tensor \(T_{d \times \ldots \times d} \leq d^{t-1} \)

Thm [Harshman’70, Kruskal’77]. Rank-\(k \) decompositions for 3-tensors (and higher orders) unique under mild conditions.

3-way decompositions overcome rotation problem!
Learning Probabilistic Models: Parameter Estimation

Learning goal: Can the parameters of the model be learned from polynomial samples generated by the model?

- Algorithms have *exponential* time & sample complexity
- EM algorithm – used in practice, but converges to local optima

Question: Can given data be “explained” by a simple probabilistic model?

- Mixture of Gaussians for clustering points
- HMMs for speech recognition
- Multiview models
Mixtures of (axis-aligned) Gaussians

Probabilistic model for Clustering in d-dims

Parameters
- Mixing weights: w_1, w_2, \ldots, w_k
- Gaussian $G_i : (\mu_i, \Sigma_i)$
 - mean μ_i, covariance Σ_i : diagonal

Learning problem: Given many sample points, find (w_i, μ_i, Σ_i)

- Algorithms use $O(\exp(k) \cdot poly(d))$ samples and time [FOS’06, MV’10]
- Lower bound of $\Omega(\exp(k))$ [MV’10] in worst case

Aim: poly(k, d) guarantees in realistic settings
Method of Moments and Tensor decompositions

step 1. compute a tensor whose decomposition encodes model parameters

step 2. find decomposition (and hence parameters)

\[T = \sum_{i=1}^{k} w_i \mu_i \otimes \mu_i \otimes \mu_i \]

- **Uniqueness** \(\Rightarrow \) Recover parameters \(w_i \) and \(\mu_i \)
- **Algorithm for Decomposition** \(\Rightarrow \) efficient learning

[Chang] [Allman, Matias, Rhodes] [Anandkumar, Ge, Hsu, Kakade, Telgarsky]
What is known about Tensor Decompositions?

Thm [Jennrich via Harshman’70]. Find unique rank-k decompositions for 3-tensors when $k \leq d$!

- Uniqueness proof is *algorithmic*!
- Called Full-rank case. No symmetry or orthogonality needed.
- Rediscovered in [Leurgans et al 1993] [Chang 1996]

Thm [Kruskal’77]. Rank-k decompositions for 3-tensors unique (non-algorithmic) when $k \leq 3d/2$!

Thm [Chiantini Ottaviani‘12].
Uniqueness (non-algorithmic) of 3-tensors of rank $k \leq c \cdot d^2$ generically

Thm [DeLathauwer, Castiang, Cardoso’07].
Algorithm for 4-tensors of rank k generically when $k \leq c \cdot d^2$
Robustness to Errors

Empirical estimate \[T = \epsilon \sum_{i=1}^{k} w_i \mu_i \otimes \mu_i \otimes \mu_i \]

With \(\text{poly}(d, k) \) samples, error \(\epsilon \approx 1/\text{poly}(d, k) \)

Uniqueness and Algorithms resilient to noise of \(1/\text{poly}(d,k) \)?

Thm. Jennrich’s polynomial time algorithm for Tensor Decompositions robust up to \(1/\text{poly}(d, k) \) error

Thm [BCV’14]. Robust version of Kruskal Uniqueness theorem (non-algorithmic) with \(1/\text{poly}(d, k) \) error

Open Problem: Robust version of generic results [De Lauthewer et al]?
Algorithms for Tensor Decompositions

Polynomial time algorithms when rank \(k \leq d \) [Jennrich]

NP-hard when rank \(k > d \) in worst case [Hastad, Hillar-Lim]

This talk

Overcome worst-case intractability using Smoothed Analysis

- Polynomial time algorithms* for robust Tensor decompositions for rank \(k \gg d \) (rank is any polynomial in dimension)

*Algorithms \(\text{poly}(d, k, 1/\epsilon) \) for recovery up to \(\epsilon \) error in ||.||_F
Implications for Learning

Known only in restricted cases:

No. of clusters \(k \leq \) No. of dims \(d \)
``Full rank'' or ``Non-degenerate'' setting

Efficient Learning when no. of clusters/ topics \(k \leq \) dimension \(d \)

[Chang 96, Mossel-Roch 06, Anandkumar et al. 09-14]

- Learning Phylogenetic trees [Chang,MR]
- Axis-aligned Gaussians [HK]
- Parse trees [ACHKSZ,BHD,B,SC,PSX,LIPPX]
- HMMs [AHK,DKZ,SBGS]
- Single Topic models [AHK], LDA [AFHKL]
- ICA [GVX] ...
- Overlapping Communities [AGHK] ...
Overcomplete Learning Setting

Number of clusters/topics/states $k \gg$ dimension d

Computer Vision

Previous algorithms do not work when $k > d$!

Speech

Need polytime decomposition of Tensors of rank $k \gg d$?
Smoothed Analysis

Simplex algorithm solves LPs efficiently (explains practice).

[Spielman & Teng 2000]

Smoothed analysis guarantees:

- Worst instances are isolated
- Small random perturbation of input makes instances easy
- Best polytime guarantees in the absence of any worst-case guarantees
Today’s talk: Smoothed Analysis for Learning [BCMV STOC’14]

• First Smoothed Analysis treatment for Unsupervised Learning

Thm. Polynomial time algorithms for learning axis-aligned Gaussians, Multiview models etc. *even in “overcomplete settings”*. Based on

Thm. Polynomial time algorithms for tensor decompositions in smoothed analysis setting.
Smoothed Analysis for Learning

Learning setting (e.g. Mixtures of Gaussians)

Worst-case instances: Means $\{\mu_i\}$ in pathological configurations

Means not in adversarial configurations in real-world!

What if means $\{\mu_i\}$ perturbed slightly?

Generally, parameters of the model are perturbed slightly.
Smoothed Analysis for Tensor Decompositions

Factors of the Decomposition are perturbed

1. Adversary chooses tensor

\[T_{d \times d \times \ldots \times d} = \sum_{i=1}^{k} a_i^{(1)} \otimes a_i^{(2)} \otimes \ldots \otimes a_i^{(t)} \]

2. \(\tilde{a}_i^{(j)} \) is random \(\rho \)-perturbation of \(a_i^{(j)} \)

 i.e. add independent (gaussian) random vector of length \(\approx \rho \).

3. Input: \(\tilde{T} \). Analyse algorithm on \(\tilde{T} \).

\[\tilde{T} = \sum_{i=1}^{k} \tilde{a}_i^{(1)} \otimes \tilde{a}_i^{(2)} \otimes \ldots \otimes \tilde{a}_i^{(t)} + \text{noise} \]
Algorithmic Guarantees

Thm [BCMV’14]. Polynomial time algorithm for decomposing t-tensor (d-dim) in smoothed analysis model when \(\text{rank } k \leq d^{(t-1)/2} \) w.h.p.

Running time, sample complexity = \(\text{poly}_t \left(d, k, \frac{1}{\rho} \right) \).

Guarantees for order-t tensors in d-dims (each)

- **Previous Algorithms**
 \(k \leq d \)

- **Algorithms (smoothed case)**
 \(k \leq d^{(t-1)/2} \)

Rank of the t-tensor=k (number of clusters)

Corollary. Polytime algorithms (smoothed analysis) for Mixtures of axis-aligned Gaussians, Multiview models etc. even in overcomplete setting i.e. no. of clusters \(k \leq \dim^C \) for any constant \(C \) w.h.p.
Interpreting Smoothed Analysis Guarantees

Time, sample complexity = $poly_t \left(d, k, \frac{1}{\rho} \right)$.

Works with probability $1 - \exp(-\rho d^{3-t})$

- Exponential small failure probability (for constant order t)

Smooth Interpolation between Worst-case and Average-case

- $\rho = 0$: worst-case
- ρ is large: almost random vectors.
- Can handle ρ inverse-polynomial in d, k
Algorithm Details
Algorithm Outline

1. An algorithm for 3-tensors in the "full rank setting" (k ≤ d).

Recall: \[T = \sum_{i=1}^{k} A_i \otimes B_i \otimes C_i \]

\textbf{Aim:} Recover A, B, C

[Jennrich 70] A simple (robust) algorithm for 3-tensor T when:
\[\sigma_k(A), \sigma_k(B), \sigma_2(C) \geq 1/\text{poly}(d, k) \]

- Any algorithm for full-rank (non-orthogonal) tensors suffices

2. For higher order tensors using "tensoring / flattening".

- Helps handle the over-complete setting (k \gg d)
Recall $T = \varepsilon \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i$

Aim: Recover A, B, C

Qn. Is this algorithm robust to errors?

Yes! Needs perturbation bounds for eigenvectors. [Stewart-Sun]

Thm. Efficiently decompose $T = \varepsilon \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i$ and recover A, B, C upto $\varepsilon \cdot \text{poly}(d, k)$ error when

1) A, B are min-singular-value $\geq 1/\text{poly}(d)$
2) C doesn’t have parallel columns.

[Stewart via Harshman 70]

Algorithm for 3-tensor $T = \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i$

- A, B are full rank (rank=k)
- C has rank ≥ 2
- Reduces to matrix eigen-decompositions
Consider rank 1 tensor \(x \otimes y \otimes z \)

s'\(\text{th} \) slice: \(y_s \cdot (x \otimes z) \)

\[
T = \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i
\]

s'\(\text{th} \) slice: \(\sum_{i=1}^{k} b_i(s). (a_i \otimes c_i) \)

All slices have a common diagonalization \((A, C)\)!

Random combination \(w \) of slices: \(\sum_{i=1}^{k} \langle b_i, w \rangle. (a_i \otimes c_i) \)
Simultaneous diagonalization

Two matrices with common diagonalization \((X, Y)\)

\[
M_1 = XD_1 Y^T \\
M_2 = XD_2 Y^T \\
M_1 M_2^{-1} = XD_1 D_2^{-1} X^{-1}
\]

If 1) \(X, Y\) are invertible and

2) \(D_1, D_2\) have unequal non-zero entries,

We can find \(X, Y\) by matrix diagonalization!
Decomposition algorithm [Jennrich]

\[T \approx_{\epsilon} \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i \]

Algorithm:
1. Take random combination along \(w_1 \) as \(M_1 \).
2. Take random combination along \(w_2 \) as \(M_2 \).
3. Find eigen-decomposition of \(M_1 M_2^\dagger \) to get \(A \). Similarly \(B, C \).

Thm. Efficiently decompose \(T = \epsilon \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i \) and recover \(A, B, C \) up to \(\epsilon \cdot \text{poly}(d, k) \) error (in Frobenius norm) when
 1) \(A, B \) are full rank i.e. min-singular-value \(\geq 1/\text{poly}(d) \)
 2) \(C \) doesn’t have parallel columns (in a robust sense).
Overcomplete Case into Techniques
Mapping to Higher Dimensions

How do we handle the case rank $k = \Omega(d^2)$?
(or even vectors with “many” linear dependencies?)

1. Tensor corresponding to map f computable using the data x
2. $f(a_1), f(a_2), \ldots, f(a_k)$ are linearly independent (min singular value)

- Reminiscent of Kernels in SVMs

f maps parameter/factor vectors to higher dimensions s.t.
A mapping to higher dimensions

Outer product / Tensor products:

Map $f(a_i) = a_i \otimes a_i$

- Tensor is $E[x \otimes^2 x \otimes^2 x \otimes^2 x]$

Basic Intuition:

1. $a_i \otimes a_i$ has d^2 dimensions.

2. For non-parallel unit vectors a_i and a_j, distance increases:

$$\langle a_i \otimes a_i, a_j \otimes a_j \rangle = \langle a_i, a_j \rangle^2 < |\langle a_i, a_j \rangle|$$

Qn: are these vectors $a_i \otimes a_i$ linearly independent?

Is ``essential dimension” $\Omega(d^2)$?
Bad cases

U, V have rank=d. Vectors $z_i = u_i \otimes v_i \in \mathbb{R}^{d^2}$

Lem. Dimension (K-rank) under tensoring is additive.

Bad example where $k > 2d$:
- Every d vectors of U and V are linearly independent
- But $(2d - 1)$ vectors of Z are linearly dependent!

Strategy does not work in the worst-case

But, bad examples are pathological and hard to construct!

Beyond Worst-case analysis
Can we hope for “dimension” to multiply “typically”?
Product vectors & linear structure

Map \(f(a_i) = a_i^\otimes t \)

- Easy to compute tensor with \(f(a_i) \) as factors / parameters
 (``Flattening'' of 3t-order moment tensor)
- New factor matrix is full rank using \textit{Smoothed Analysis}.

\[\text{Map: } f(a_i) = a_i^\otimes t \]

\[A (d \times k) \]

\[\tilde{A} (d \times k) \]

\[a_i \rightarrow \tilde{a}_i \]

\[\text{random } \rho \text{-perturbation} \]

Theorem. For any matrix \(A_{d \times k} \), for \(k < d^t / 2 \),

\[\sigma_k(\tilde{A}) \geq 1 / \text{poly} \left(k, d, \frac{1}{\rho} \right) \]

with probability \(1 - \exp(-\text{poly}(d)) \).
Proof sketch (t=2)

Prop. For any matrix A, matrix U below ($k < d^2/2$) has

\[
\sigma_k(\tilde{A}) \geq 1/\text{poly} \left(k, d, \frac{1}{\rho} \right) \text{ with probability } 1 - \exp(-\text{poly}(d)).
\]

$a_i \rightarrow \tilde{a}_i$

\[\tilde{a}_i = a_i + \varepsilon_i\]

Main Issue: perturbation before product..

- easy if columns perturbed after tensor product (simple anti-concentration bounds)

- only $2d$ bits of randomness in d^2 dims

- Block dependencies

Technical component

show perturbed product vectors behave like random vectors in \mathbb{R}^{d^2}
Projections of product vectors

Question. Given any vector $a \in \mathbb{R}^d$ and gaussian ρ-perturbation $\tilde{a} = a + \epsilon$, does $\tilde{a} \otimes \tilde{a}$ have projection $poly(\rho, \frac{1}{d})$ onto any given $d^2/2$ dimensional subspace $S \subset \mathbb{R}^{d^2}$ with prob. $1 - \exp(-\sqrt{d})$?

Easy: Take d^2 dimensional x, ρ-perturbation to x will have projection $> 1/poly(\rho)$ on to S w.h.p.

Much tougher for product of perturbations! (inherent block structure)

\[\tilde{a}(1) \otimes \tilde{b} \quad \ldots \quad \tilde{a}(j) \otimes \tilde{b} \quad \ldots \quad \tilde{a}(d) \otimes b \]
Question. Given any vector $a, b \in \mathbb{R}^d$ and gaussian ρ-perturbation \tilde{a}, \tilde{b}, does $\tilde{a} \otimes \tilde{b}$ have projection $\text{poly}(\rho, \frac{1}{d})$ onto any given $d^2/2$ dimensional subspace $S \subset \mathbb{R}^{d^2}$ with prob. $1 - \exp(-\sqrt{d})$?

\[\Pi_S \text{ is projection matrix onto } S \]

\[\Pi_S(x) \text{ is a } \frac{d^2}{2} \times d \text{ matrix} \]

\[\tilde{a}(1) \otimes \tilde{b} \]

\[= \]

\[\tilde{a}(d) \otimes b \]

dot product of block with \tilde{b}

\[\Pi_S(\tilde{b}) \]

\[\tilde{a} \]
Two steps of Proof..

1. W.h.p. (over perturbation of b), $\Pi_S(\tilde{b})$ has at least r eigenvalues $> poly(\rho, \frac{1}{d})$

will show with $r = \sqrt{d}$

2. If $\Pi_S(\tilde{b})$ has r eigenvalues $> poly(\rho, \frac{1}{d})$, then w.p. $1 - \exp(-r)$ (over perturbation of \tilde{a}), $\tilde{a} \otimes \tilde{b}$ has large projection onto S.

follows easily analyzing projection of a vector to a dim-k space
Suppose: Choose Π_S first $\sqrt{d} \times \sqrt{d}$ “blocks” in Π_S were orthogonal...

Structure in any subspace S

- $\Pi_S(\vec{b})|_{\sqrt{d}} = \sqrt{d}$
 - (restricted to \sqrt{d} cols)

- Entry (i,j) is: $\langle v_{i,j}, b + \varepsilon \rangle$

- Translated i.i.d. Gaussian matrix! has many big eigenvalues
Main claim: every $c. d^2$ dimensional space S has $\sim \sqrt{d}$ vectors with such a structure.

Property: picked blocks (d dim vectors) have “reasonable” component orthogonal to span of rest..

Earlier argument goes through even with blocks not fully orthogonal!
Idea: obtain “good” columns one by one.

- Show there exists a block with many linearly independent “choices”
- Fix some choices and argue the same property holds, …

Q.E.D.

Generalization: similar result holds for higher order products, implies main result.

- Uses a delicate inductive argument

crucially use the fact that we have a $\Omega(d^2)$ dim subspace
Summary

• Smoothed Analysis for Learning Probabilistic models.

• Polynomial time Algorithms in Overcomplete settings:

Guarantees for order-t tensors in d-dims (each)

Previous Algorithms

\[k \leq d \]

Algorithms (smoothed case)

\[k \leq d^{(t-1)/2} \]

\textit{Rank of the t-tensor}=k \text{ (number of clusters)}

• Flattening gets beyond full-rank conditions:

Plug into results on Spectral Learning of Probabilistic models
Future Directions

Better Robustness to Errors

- Modelling errors?
- Tensor decomposition algorithms that more robust to errors? promise: [Barak-Kelner-Steurer’14] using Lasserre hierarchy

Better dependence on rank k vs dim d (esp. 3 tensors)

- Next talk by Anandkumar: Random/ Incoherent decompositions

Better guarantees using Higher-order moments

- Better bounds w.r.t. smallest singular value?

Smoothed Analysis for other Learning problems?
Thank You!

Questions?