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General Framework

Discover hidden structure in data: unsupervised and semi-supervised
learning of latent variable models.

Moment-based estimation: Compute low order moments (up to
fourth order) from observed data.

In this talk

Unsupervised and semi-supervised learning through tensor
decomposition

Overcomplete models: Number of latent components greater than
observed dimension.

Tight sample complexity bounds: Novel concentration bounds for
tensors.
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CANDECOMP/PARAFAC (CP) Decomposition

a⊗ b⊗ c is a rank-1 tensor whose i
th entry is a(i1) · b(i2) · c(i3).

For tensor T , find decomposition into rank one terms

T =
∑

j∈[k]
wjaj ⊗ bj ⊗ cj , aj , bj , cj ∈ Sd−1.

= + ....

Tensor T w1 · a1 ⊗ b1 ⊗ c1 w2 · a2 ⊗ b2 ⊗ c2

k: tensor rank, d: ambient dimension.

k ≤ d: undercomplete and k > d: overcomplete.

In this talk: guarantees for overcomplete tensor decomposition
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Spherical Gaussian Mixtures

Assumptions

k components, d: observed dimension.

Component means ai incoherent: randomly drawn
from the sphere.

Spherical variance σ2

d I (assume known).

In this talk: special case

Noise norm σ2 = 1: same as signal.

Uniform probability of components.

Tensor For Learning (Hsu, Kakade 2012)

M3 := E[x⊗3]− σ2
∑

i∈[d]
(E[x]⊗ ei ⊗ ei + . . .)



Semi-supervised Learning of Gaussian Mixtures

n unlabeled samples, mj : samples for component j.

No. of mixture components: k = o(d1.5)

No. of labeled samples: mj = Ω̃(1).

No. of unlabeled samples: n = Ω̃(k).

Our result: achieved error with n unlabeled samples

max
i

‖âi − ai‖ = Õ

(√
k

n

)
+ Õ

(√
k

d

)

Can handle (polynomially) overcomplete mixtures.

Extremely small number of labeled samples: polylog(d).

Sample complexity is tight: need Ω̃(k) samples!

Approximation error: decaying in high dimensions.



Unsupervised Learning of Gaussian Mixtures

Conditions for recovery

No. of mixture components: k = C · d
No. of unlabeled samples: n = Ω̃(k · d).
Computational complexity: Õ

(
eC

2

)

Our result: achieved error with n unlabeled samples

max
i

‖âi − ai‖ = Õ

(√
k

n

)
+ Õ

(√
k

d

)

Error: same as before, for semi-supervised setting.

Sample complexity: worse than semi-supervised, but better than
previous works (no dependence on condition number of A).

Computational complexity: polynomial when k = Θ(d).



Multi-view Mixture Models

x1 x2 x3 x4 x5

h

Linear model: xi = Aih+ zi.

Incoherence: The columns of Ai are incoherent (randomly drawn
from sphere).

The noise zi satisfy RIP, e.g. Gaussian, Bernoulli.

Same results as Gaussian mixtures.



Independent Component Analysis

Independent sources, unknown mixing.

Blind source separation of speech, image, video..

Form cumulant tensor M4 := E[x⊗4]− . . .

n samples. k sources. d dimensions.

x = Ah. Columns of A are incoherent.

Sources h are kurtotic.

h1 h2 hk

x1 x2 xd

A

Learning Result

Semi-supervised: k = o(d2), n ≥ max(k2, k4/d3).

Unsupervised: k = O(d), n ≥ k3.

max
i

min
f∈{−1,1}

‖f âi − ai‖ = Õ



√√√√ k2

min
(
n,

√
d3n
)


+ Õ

(√
k

d1.5

)



Sparse Coding

Sparse coefficients, unknown dictionary.

Image compression, feature learning...

x = Ah. Columns of A are incoherent.

h1 h2 hk

x1 x2 xd

A

Coefficients h are independent Bernoulli Gaussian: Sparse ICA.

Form cumulant tensor M4 := E[x⊗4]− . . .

n samples. k dictionary elements. d dimensions. s avg. sparsity.

Learning Result

Semi-supervised: k = o(d2), n ≥ max(sk, s2k2/d3).

Unsupervised: k = O(d), n ≥ sk2.

max
i

min
f∈{−1,1}

‖f âi − ai‖ = Õ



√√√√

sk

min
(
n,

√
d3n
)


+ Õ

(√
k

d1.5

)
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Background on Tensor Decomposition

T =
∑

i∈[k]
wiai ⊗ bi ⊗ ci, ai, bi, ci ∈ Sd−1.

Theoretical Guarantees

Tensor decompositions in psychometrics (Cattell ‘44).

CP tensor decomposition (Harshman ‘70, Carol & Chang ‘70).

Identifiability of CP tensor decomposition (Kruskal ‘76).

Orthogonal decomposition: (Zhang & Golub ‘01, Kolda ‘01).

Tensor decomposition through (lifted) linear equations (Lawthauwer
‘07): works for overcomplete tensors.

Tensor decomposition through simultaneous diagonalization:
perturbation analysis (Goyal et. al ‘13, Bhaskara ‘13)



Background on Tensor Decompositions (contd.)

T =
∑

i∈[k]
wiai ⊗ bi ⊗ ci, ai, bi, ci ∈ Sd−1.

Practice: Alternating least squares (ALS)

Let A = [a1|a2 . . . ak] and similarly B,C.

Fix estimates of two of the modes (say for A and B) and re-estimate
the third.

Iterative updates, low computational complexity.

No theoretical guarantees.

In this talk: analysis of alternating minimization



Alternating Minimization

T =
∑

i∈[k]
wiai ⊗ bi ⊗ ci, ai, bi, ci ∈ Sd−1.

Rank-1 Updates

Initialization: a(0), b(0), c(0).

Update in tth step: fix a(t), b(t) and

c(t) ∝ T (a(t), b(t), I) =
∑

i∈[k]
wi〈ai, a(t)〉〈bi, b(t)〉ci.

After (approx.) convergence, restart.



Optimization Viewpoint

Best Rank-1 Approximation

min
a,b,c∈Sd−1,w∈R

‖T − w · a⊗ b⊗ c‖F .

Challenges

Optimization problem: non-convex, multiple local optima.
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Optimization Viewpoint

Best Rank-1 Approximation

min
a,b,c∈Sd−1,w∈R

‖T − w · a⊗ b⊗ c‖F .

Challenges

Optimization problem: non-convex, multiple local optima.

Alternating minimization: improves above objective in each step.

Recovery of ai, bi, ci’s? Not true in general.

Noisy tensor decomposition: exact T not available, robustness?
sample complexity?

Natural conditions under which Alt-Min has guarantees?



Special case: Orthogonal Setting

〈ai, aj〉 = 0, for i 6= j. Similarly for b, c.

Alternating updates:

c(t) ∝ T (a(t), b(t), I) =
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i∈[k]
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ai, bi, ci are stationary points.
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Hsu, S.M. Kakade and M. Telgarsky. Preprint, October 2012.
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Special case: Orthogonal Setting

〈ai, aj〉 = 0, for i 6= j. Similarly for b, c.

Alternating updates:

c(t) ∝ T (a(t), b(t), I) =
∑

i∈[k]
wi〈ai, a(t)〉〈bi, b(t)〉ci.

ai, bi, ci are stationary points.

ONLY local optima for best rank-1 approximation problem.

Guaranteed recovery through alternating minimization.

Perturbation Analysis: Under poly(d) number of random
initializations and bounded noise conditions.

“Tensor Decompositions for Learning Latent Variable Models” by A. Anandkumar, R. Ge, D.

Hsu, S.M. Kakade and M. Telgarsky. Preprint, October 2012.
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Beyond Orthogonal Tensor Decomposition

Limitations

Not ALL tensors have orthogonal decomposition (unlike matrices).

Orthogonal forms: cannot handle overcomplete tensors (k > d).

Overcomplete representations: redundancy leads to flexible modeling,
noise resistant, no domain knowledge.

Undercomplete tensors (k ≤ d) with full rank components

Assume A,B,C have full column rank.

Whitening: Compute multilinear transformation to obtain an
orthogonal form.

Limitations: depends on condition number, sensitive to noise.
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Analysis of One Step Update

Basic Intuition
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T−1(â, b̂, I) = 0 in orthogonal case, when â = a1, b̂ = b1.
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Basic Intuition

Let â, b̂ be “close to” a1, b1. Alternating update:

ĉ ∝ T (â, b̂, I) =
∑

i∈[k]
wi〈ai, â〉〈bi, b̂〉ci,

= w1〈a1, â〉〈b1, b̂〉+ T−1(â, b̂, I).

T−1(â, b̂, I) = 0 in orthogonal case, when â = a1, b̂ = b1.

Can it be controlled for incoherent (random) vectors?
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Results for one step update
Incoherence: |〈ai, aj〉| = O

(
1/
√
d
)
for i 6= j. Similarly for b, c.

Spectral norm: ‖A‖, ‖B‖, ‖C| ≤ 1 +O

(√
k
d

)
. ‖T‖ ≤ (1 + o(1)).

Tensor rank: k = o(d1.5). Weights: For simplicity, wi ≡ 1.

dist(â, a) := minf ‖f â− a‖ for normalized â, a.
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Spectral norm: ‖A‖, ‖B‖, ‖C| ≤ 1 +O

(√
k
d

)
. ‖T‖ ≤ (1 + o(1)).

Tensor rank: k = o(d1.5). Weights: For simplicity, wi ≡ 1.

dist(â, a) := minf ‖f â− a‖ for normalized â, a.

Lemma (AGJ 2014)

dist(a1, â) ≤ ǫ, similarly for b̂, and 1− ǫ2 > f(ǫ; k, d), after one step

dist(ĉ, c1) ≤
f(ǫ; k, d)

1− ǫ2 − f(ǫ; k, d)
.

f(ǫ; k, d) := O

(√
k

d
+max

(
1√
d
,

k

d1.5

)
ǫ+ ǫ2

)
.

√
k

d
: approximation error, rest: error contraction.



Main Result: Local Convergence

Initialization: dist(a1, â) ≤ ǫ0, similarly for b̂ and ǫ0 < const.

Noise: T̂ := T + E, and ‖E‖ ≤ 1/polylog(d).

Approximation error: ǫT := ‖E‖ + Õ
(√
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Main Result: Local Convergence

Initialization: dist(a1, â) ≤ ǫ0, similarly for b̂ and ǫ0 < const.

Noise: T̂ := T + E, and ‖E‖ ≤ 1/polylog(d).

Approximation error: ǫT := ‖E‖ + Õ
(√

k
d

)

Theorem (Local Convergence)

After O(log(1/ǫT )) steps of alternating rank-1 updates,

dist(a1, a
(t)) = O(ǫT ).

Linear convergence: up to approximation error.

Guarantees for overcomplete tensors: k = o(d1.5) and for pth-order
tensors k = o(dp/2).

Requires good initialization. What about global convergence?
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Global Convergence k = O(d)

SVD Initialization

Find the top singular vectors of T (I, I, θ) for θ ∼ N (0, I).

Use them for initialization. L trials.

Assumptions

Number of initializations: L ≥ kΩ(k/d)2 , Tensor Rank: k = O(d)

No. of Iterations: N = Θ(log(1/ǫT )). Recall ǫT : approx. error.

Theorem (Global Convergence) dist(a1, a
(N)) ≤ O(ǫT ).

Corollary: Differing Dimensions

If ai, bi ∈ R
du and ci ∈ R

do , and du ≥ k ≥ do.

k = O(
√
dudo) for incoherent vectors. k = O(du) if A,B orthogonal.

Same guarantees. Can handle one overcomplete mode.



High-level Intuition for Sample Bounds

Multi-view Model: x1 = Ah+ zi, where zi is noise.

Exact moment T =
∑

i wiai ⊗ bi ⊗ ci.

Sample moment: T̂ = 1
n

∑
i x

i
1 ⊗ xi2 ⊗ xi3.

Naive Idea: ‖T̂ − T‖ ≤ ‖mat(T̂ )−mat(T )‖, apply matrix Bernstein’s.

Our idea: Careful ǫ-net covering for T̂ − T .

T̂ − T has many terms, e.g. all-noise term: 1
n

∑
i z

i
1 ⊗ zi2 ⊗ zi3 and

signal-noise terms.

Need to bound
1

n

∑

i

〈zi1, u〉〈zi2, v〉〈zi3, w〉, for all u, v, w ∈ Sd−1.

Classify inner products into buckets and bound them separately.

Tight sample bounds for a range of latent variable models
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Conclusion

T =
∑

i∈[k]
wiai ⊗ bi ⊗ ci, ai, bi, ci ∈ Sd−1.

= + ....

Tensor T w1 · a1 ⊗ b1 ⊗ c1 w2 · a2 ⊗ b2 ⊗ c2

Summary

Analysis of alternating rank-1 updates under incoherent components.

(Approx.) local convg. k = o(d1.5), global convg. k = O(d).

Efficient learning and tight sample complexity for various latent
variable models.



Other Works on Tensor Decompositions

Large-Scale Cloud Implementation on REEF

F. Huang, N. Karampatziakis, S. Matusevych, P. Mineiro, A.
Anandkumar, “Tensor Decompositions on REEF,” under preparation.

Code will soon be available.

Parallelized Hierarchical Tensor Decomposition

F. Huang, U. N. Niranjan, A. Anandkumar, “Integrated Structure and
Parameter Learning in Latent Tree Graphical Models,” on ArXiv.

Code available at
https://github.com/FurongHuang/StructureParameterLatentTree.git

Talk tomorrow at Learning Tractable Probabilistic Models (LTPM)
workshop at 14:00.

https://github.com/FurongHuang/StructureParameterLatentTree.git


Tensor Factorization on REEF

Large-scale implementation

Map-Reduce: huge overhead in disk reading, container allocation.

REEF: Retainable Evaluator Execution Framework.

Advantage: Open source distributed system with one time container
allocation, keep the tensor in memory

Solution: REEF

Disk Read

Container

Allocation

ALSALSALS

mode a mode b mode c



Preliminary Evaluation

New York Times Corpus

Documents n = 300, 000

Vocabulary d = 100, 000

Topics k = 100

Stochastic Variational Inference Tensor Decomposition
Perplexity 4000 3400

SVI 1 node Map Red 1 node REEF 4 node REEF
overall 2 hours 4 hours 31 mins 68 mins 36 mins
Whiten 16 mins 16 mins 16 mins
Matricize 15 mins 15 mins 4 mins

ALS 4 hours 37 mins 16 mins
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