Orthogonally Decomposable Tensors

Elina Robeva
UC Berkeley

June 25, 2014

Symmetric Tensors

T is an $\underbrace{n \times \ldots \times n}_{d \text { times }}$ symmetric tensor with elements in a field $\mathbb{K}(=\mathbb{R}, \mathbb{C})$ if

$$
T_{i_{1} i_{2} \ldots i_{d}}=T_{i_{\sigma_{1}} i_{\sigma_{2}} \ldots i_{\sigma_{d}}}
$$

for all permutations σ of $\{1,2, \ldots, d\}$. Notation: $T \in S^{d}\left(\mathbb{K}^{n}\right)$.
Example $(d=2)$

$$
T=\left(\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 n} \\
T_{12} & T_{22} & \cdots & T_{2 n} \\
& & \vdots & \\
T_{1 n} & T_{2 n} & \cdots & T_{n n}
\end{array}\right)
$$

Example $(n=3, d=3)$

$$
T=\underbrace{\left(\begin{array}{lll}
T_{111} & T_{112} & T_{113} \\
T_{112} & T_{122} & T_{123} \\
T_{113} & T_{123} & T_{133}
\end{array}\right)}_{T_{1 .}}, \underbrace{\left(\begin{array}{lll}
T_{112} & T_{122} & T_{123} \\
T_{122} & T_{222} & T_{223} \\
T_{123} & T_{223} & T_{233}
\end{array}\right)}_{T_{2 .}}, \underbrace{\left(\begin{array}{lll}
T_{113} & T_{123} & T_{133} \\
T_{123} & T_{223} & T_{233} \\
T_{133} & T_{233} & T_{333}
\end{array}\right)}_{T_{3 . .}} .
$$

Symmetric Tensors and Polynomials

An equivalent way of representing a symmetric tensor $T \in S^{d}\left(\mathbb{K}^{n}\right)$ is by a homogeneous polynomial $f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ of degree d.
Example $(d=2)$
In the case of matrices,

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{n}\right)=x^{T} T x \\
& =\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right)\left(\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 n} \\
T_{12} & T_{13} & \cdots & T_{2 n} \\
& & \vdots & \\
T_{1 n} & T_{2 n} & \cdots & T_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
& =\sum_{i, j} T_{i j} x_{i} x_{j} .
\end{aligned}
$$

Symmetric Tensors and Polynomials

For general $T \in S^{d}\left(\mathbb{K}^{n}\right)$,

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n}\right) & =T \cdot x^{d}:=\sum_{i_{1}, \ldots, i_{d}=1}^{n} T_{i_{1} \ldots i_{d}} x_{i_{1}} \ldots x_{i_{d}} \\
& =\sum_{j_{1}+\cdots+j_{n}=d}\binom{d}{j_{1}, \ldots, j_{n}} T_{\underbrace{}_{j_{1}} \ldots 1 \ldots \underbrace{n \ldots n}_{j_{n}} x_{1}^{j_{1}} \ldots x_{n}^{j_{n}}} \\
& =\sum_{j_{1}+\cdots+j_{n}=d} u_{j_{1}, \ldots, j_{n}} x_{1}^{j_{1}} \ldots x_{n}^{j_{n}} .
\end{aligned}
$$

Example ($n=3, d=2$)
For 3×3 matrices,

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right)=\sum_{i_{1}, i_{2}=1}^{3} T_{i_{1} i_{2}} x_{i_{1}} x_{i_{2}} \\
& =\underbrace{T_{11}}_{u_{2,0,0}} x_{1}^{2}+\underbrace{2 T_{12}}_{u_{1,1,0}} x_{1} x_{2}+\underbrace{2 T_{13}}_{u_{1,0,1}} x_{1} x_{3}+\underbrace{T_{22}}_{u_{0,2,0}} x_{2}^{2}+\underbrace{2 T_{23}}_{u_{0,1,1}} x_{2} x_{3}+\underbrace{T_{33}}_{u_{0,0,2}} x_{3}^{2}
\end{aligned}
$$

Symmetric Tensor Decomposition

For a tensor $T \in S^{d}\left(\mathbb{K}^{n}\right)$, a decomposition has the form

$$
T=\sum_{i=1}^{r} \lambda_{i} v_{i}^{\otimes d}
$$

If $f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is the corresponding polynomial, then

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{r} \lambda_{i}\left(v_{i} \cdot x\right)^{d}=\sum_{i=1}^{r} \lambda_{i}\left(v_{i 1} x_{1}+v_{i 2} x_{2}+\cdots+v_{i n} x_{n}\right)^{d} .
$$

The smallest r for which such a decomposition exists is the symmetric rank of T.

Facts about Symmetric Tensor Decomposition

- The rank depends on the field \mathbb{K}.

Example $(d=3, n=2)$
Consider

$$
A=\left[\begin{array}{cc|cc}
-1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right] \in S^{3}\left(\mathbb{R}^{2}\right)
$$

A has symmetric rank 3 over \mathbb{R} :

$$
A=\frac{1}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{\otimes 3}+\frac{1}{2}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]^{\otimes 3}-2\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{\otimes 3}
$$

whereas it has symmetric rank 2 over \mathbb{C} :

$$
A=\frac{i}{2}\left[\begin{array}{c}
-i \\
1
\end{array}\right]^{\otimes 3}-\frac{i}{2}\left[\begin{array}{l}
i \\
1
\end{array}\right]^{\otimes 3}, \text { where } i=\sqrt{-1}
$$

Facts about Symmetric Tensor Decomposition

- The rank strata: $\mathcal{Y}_{r}:=\left\{T \in S^{d}\left(\mathbb{K}^{n}\right): \operatorname{rank}(T) \leq r\right\}$ are usually not closed.

Example (Matrices)

For matrices the rank strata ARE closed:

$$
\begin{gathered}
\mathcal{Y}_{r}=\left\{T \in S^{2}\left(\mathbb{K}^{n}\right): \operatorname{rank}(T) \leq r\right\} \\
=\text { zero set of }(r+1) \times(r+1) \text { minors of } T,
\end{gathered}
$$

e.g. when $n=3$,

$$
\mathcal{Y}_{1}=\left\{T \in S^{2}\left(\mathbb{K}^{3}\right): \operatorname{rank}(T) \leq 1\right\}
$$

$$
=\left\{\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{12} & x_{22} & x_{23} \\
x_{13} & x_{23} & x_{33}
\end{array}\right): \begin{array}{l}
x_{11} x_{22}-x_{12}^{2}=0, x_{11} x_{23}-x_{13} x_{12}=0 \\
x_{11} x_{33}-x_{13}^{2}=0, x_{12} x_{23}-x_{13} x_{22}=0 \\
x_{12} x_{33}-x_{13} x_{23}=0, x_{22} x_{33}-x_{23}^{2}=0
\end{array}\right\}
$$

which is a closed set.

Facts about Symmetric Tensor Decomposition

- The rank strata: $\mathcal{Y}_{r}:=\left\{T \in S^{d}\left(\mathbb{K}^{n}\right): \operatorname{rank}(T) \leq r\right\}$ are usually not closed.

Example

Let $\epsilon \neq 0$ and x, y non-collinear vectors.

$$
A_{\epsilon}=\epsilon^{2}\left(x+\epsilon^{-1} y\right)^{\otimes 3}+\epsilon^{2}\left(x-\epsilon^{-1} y\right)^{\otimes 3} .
$$

When $\epsilon \rightarrow 0$,

$$
A_{\epsilon} \rightarrow A_{0}=2(x \otimes y \otimes y+y \otimes x \otimes y+y \otimes y \otimes x)
$$

which has symmetric rank 3:

$$
A_{0}=(x+y)^{\otimes 3}-(x-y)^{\otimes 3}-2 y^{\otimes 3}
$$

Facts about Symmetric Tensor Decomposition

- The generic rank of tensors in $S^{d}\left(\mathbb{C}^{n}\right)$, denoted by $\bar{R}_{S}(d, n)$ is the smallest r such that "almost all" $T \in S^{d}\left(\mathbb{C}^{n}\right)$ have symmetric rank at most r.

Example $(d=2)$
The generic rank of $n \times n$ marices is n.

Example ($n=3, d=3$)

The generic rank for tensors $T \in S^{3}\left(\mathbb{C}^{3}\right)$ is $\bar{R}_{S}(3,3)=4$. All tensors $T \in S^{3}\left(\mathbb{C}^{3}\right)$ that have symmetric rank at most 3 satisfy one polynomial equation $f(T)=0$, called the Aronhold invariant.

Facts about Symmetric Tensor Decomposition

- The generic rank of tensors in $S^{d}\left(\mathbb{C}^{n}\right)$, denoted by $\bar{R}_{S}(d, n)$ is the smallest r such that "almost all" $T \in S^{d}\left(\mathbb{C}^{n}\right)$ have symmetric rank at most r.

Example $(d=2)$
The generic rank of $n \times n$ marices is n.

Example ($n=3, d=3$)

The generic rank for tensors $T \in S^{3}\left(\mathbb{C}^{3}\right)$ is $\bar{R}_{S}(3,3)=4$. All tensors $T \in S^{3}\left(\mathbb{C}^{3}\right)$ that have symmetric rank at most 3 satisfy one polynomial equation $f(T)=0$, called the Aronhold invariant.

Theorem (Alexander-Hirschowitz)
For $d>2$,

$$
\bar{R}_{S}(d, n)=\left\lceil\frac{1}{n}\binom{n+d-1}{d}\right\rceil
$$

except for the cases: $(d, n) \in\{(3,5),(4,3),(4,4),(4,5)\}$, where it should be increased by 1 .

Facts about Symmetric Tensor Decomposition

- When is the symmetric tensor decomposition unique?

Theorem
For all $r<\bar{R}_{S}(d, n)$, the general element of rank r in $S^{d}\left(\mathbb{C}^{n}\right)$ has a unique (up to scaling) decomposition $T=\sum_{i=1}^{r} \lambda_{i} v_{i}^{\otimes d}$ with the only exceptions
(1) $(d, n) \in\{(3,5),(4,3),(4,4),(4,5)\}$, where there are infinitely many decompositions,
(2) rank 9 in $S^{6}\left(\mathbb{C}^{3}\right)$, where there are two decompositions,
(3) rank 8 in $S^{4}\left(\mathbb{C}^{4}\right)$, where there are two decompositions.

Orthogonal Tensor Decomposition

An orthogonal decomposition of a symmetric tensor $T \in S^{d}\left(\mathbb{K}^{n}\right)$ is a decomposition

$$
T=\sum_{i=1}^{r} \lambda_{i} v_{i}^{\otimes d} \text { with corresponding } f=\sum_{i=1}^{r} \lambda_{i}\left(v_{i} \cdot x\right)^{d}
$$

such that the vectors v_{1}, \ldots, v_{r} are orthonormal. In particular, $r \leq n$.

Definition

A tensor $T \in S^{d}\left(\mathbb{K}^{n}\right)$ with corresponding f is orthogonally decomposable, for short odeco, if it has an orthogonal decomposition.

Examples

1. All symmetric matrices are odeco: by the spectral theorem

$$
\begin{gathered}
T=V^{T} \wedge V=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & \cdots & \mid
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]\left[\begin{array}{ccc}
- & v_{1} & - \\
& \vdots & \\
- & v_{n} & -
\end{array}\right] \\
=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{T}=\sum_{i=1}^{n} \lambda_{i} v_{i}^{\otimes 2}
\end{gathered}
$$

where v_{1}, \ldots, v_{n} is an orthonormal basis of eigenvectors.
2. The Fermat polynomial: If $v_{i}=e_{i}$, for $i=1, \ldots, n$, then

$$
\begin{gathered}
f\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{d}+x_{2}^{d}+\cdots+x_{n}^{d} \\
T=e_{1}^{\otimes d}+e_{2}^{\otimes d}+\cdots+e_{n}^{\otimes d}
\end{gathered}
$$

3. If $V=\left(\begin{array}{ccc}1 & 3 & 1 \\ -2 & 1 & -1 \\ 4 & 1 & -7\end{array}\right)$, then

$$
f(x, y, z)=(x+3 y+z)^{3}+(-2 x+y-z)^{3}+(4 x+y-7 z)^{3}
$$

An Application: Exchangeable Single Topic Models

Pick a topic $h \in\{1,2, \ldots, k\}$ with distribution $\left(w_{1}, \ldots, w_{k}\right) \in \Delta_{k-1}$. Given $h=j, x_{1}, \ldots, x_{d}$ are i.i.d random variables taking values in $\{1,2, \ldots, n\}$ with distribution $\mu_{j}=\left(\mu_{j 1}, \ldots, \mu_{j n}\right) \in \Delta_{n-1}$.

An Application: Exchangeable Single Topic Models

Pick a topic $h \in\{1,2, \ldots, k\}$ with distribution $\left(w_{1}, \ldots, w_{k}\right) \in \Delta_{k-1}$. Given $h=j, x_{1}, \ldots, x_{d}$ are i.i.d random variables taking values in $\{1,2, \ldots, n\}$ with distribution $\mu_{j}=\left(\mu_{j 1}, \ldots, \mu_{j n}\right) \in \Delta_{n-1}$.

Then, the joint distribution of x_{1}, \ldots, x_{d} is an $\underbrace{n \times n \times \cdots \times n}_{d \text { times }}$ symmetric tensor $T \in S^{d}\left(\mathbb{R}^{n}\right)$ whose entries sum to 1 . Moreover,

$$
T=\sum_{j=1}^{k} \mathbb{P}(h=j) \prod_{i=1}^{d} \mathbb{P}\left(x_{i} \mid h=j\right)=\sum_{j=1}^{k} w_{j} \mu_{j}^{\otimes d}
$$

An Application: Exchangeable Single Topic Models

Pick a topic $h \in\{1,2, \ldots, k\}$ with distribution $\left(w_{1}, \ldots, w_{k}\right) \in \Delta_{k-1}$. Given $h=j, x_{1}, \ldots, x_{d}$ are i.i.d random variables taking values in $\{1,2, \ldots, n\}$ with distribution $\mu_{j}=\left(\mu_{j 1}, \ldots, \mu_{j n}\right) \in \Delta_{n-1}$.

Then, the joint distribution of x_{1}, \ldots, x_{d} is an $\underbrace{n \times n \times \cdots \times n}_{d \text { times }}$ symmetric tensor $T \in S^{d}\left(\mathbb{R}^{n}\right)$ whose entries sum to 1 . Moreover,

$$
T=\sum_{j=1}^{k} \mathbb{P}(h=j) \prod_{i=1}^{d} \mathbb{P}\left(x_{i} \mid h=j\right)=\sum_{j=1}^{k} w_{j} \mu_{j}^{\otimes d} .
$$

Given T, to recover the parameters w, μ, use a transformation $T \mapsto T_{\text {od }}$ and decompose $T_{o d}$.

Eigenvectors of Tensors

Consider a symmetric tensor $T \in S^{d}\left(\mathbb{K}^{n}\right)$.
Example ($d=2$)
T is an $n \times n$ matrix and $w \in \mathbb{K}^{n}$ is an eigenvector if

$$
T w=\left(\begin{array}{c}
\vdots \\
\sum_{j=1}^{n} T_{i, j} w_{j} \\
\vdots
\end{array}\right)=\lambda w .
$$

Example ($d=3$)
T is an $n \times n \times n$ tensor and $w \in \mathbb{K}^{n}$ is an eigenvector if

$$
T w^{2}:=\left(\begin{array}{c}
\vdots \\
\sum_{j, k=1}^{n} T_{i, j, k} w_{j} w_{k} \\
\vdots
\end{array}\right)=\lambda w .
$$

Eigenvectors of Tensors

Definition

- Given a symmetric tensor $T \in S^{d}\left(\mathbb{K}^{n}\right)$, an eigenvector of T with eigenvalue λ is a vector $w \in \mathbb{K}^{n}$ such that

$$
T w^{d-1}:=\left(\begin{array}{c}
\vdots \\
\sum_{i_{2}, \ldots, i_{d}=1}^{n} T_{i, i_{2}, \ldots, i_{d}} w_{i_{2}} \ldots w_{i_{d}} \\
\vdots
\end{array}\right)=\lambda w .
$$

Two eigenvector-eigenvalue pairs (w, λ) and $\left(w^{\prime}, \lambda^{\prime}\right)$ are equivalent if there exists $t \in \mathbb{K} \backslash\{0\}$ such that $t^{d-2} \lambda=\lambda^{\prime}$ and $t w=w^{\prime}$.

- For the corresponding $f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right], w \in \mathbb{K}^{n}$ is an eigenvector with eigenvalue λ if

$$
\nabla f(w)=d \lambda w .
$$

Eigenvectors of Tensors

Definition

- Given a symmetric tensor $T \in S^{d}\left(\mathbb{K}^{n}\right)$, an eigenvector of T with eigenvalue λ is a vector $w \in \mathbb{K}^{n}$ such that

$$
T w^{d-1}:=\left(\begin{array}{c}
\vdots \\
\sum_{i_{2}, \ldots, i_{d}=1}^{n} T_{i, i_{2}, \ldots, i_{d}} w_{i_{2}} \ldots w_{i_{d}} \\
\vdots
\end{array}\right)=\lambda w
$$

Two eigenvector-eigenvalue pairs (w, λ) and ($w^{\prime}, \lambda^{\prime}$) are equivalent if there exists $t \in \mathbb{K} \backslash\{0\}$ such that $t^{d-2} \lambda=\lambda^{\prime}$ and $t w=w^{\prime}$.

- For the corresponding $f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right], w \in \mathbb{K}^{n}$ is an eigenvector with eigenvalue λ if

$$
\nabla f(w)=d \lambda w
$$

Therefore, the eigenvectors of f are given by the vanishing of the

$$
2 \times 2 \text { minors of the matrix }[\nabla f(x) \mid x] \text {. }
$$

Eigenvectors of Tensors

Example

Let

$$
T=e_{1}^{\otimes 3}+e_{2}^{\otimes 3}+e_{3}^{\otimes 3} \text { and } f(x, y, z)=x^{3}+y^{3}+z^{3} .
$$

Then, $(x, y, z)^{T}$ is an eigenvector of f if and only if the 2×2 minors of
the matrix $\left[\begin{array}{cc}x \\ \nabla f & y \\ & z\end{array}\right]=\left[\begin{array}{ll}3 x^{2} & x \\ 3 y^{2} & y \\ 3 z^{2} & z\end{array}\right]$ vanish. Therefore,

$$
x^{2} y-x y^{2}=x^{2} z-x z^{2}=y^{2} z-y z^{2}=0 .
$$

This is equivalent to

$$
x y(x-y)=x z(x-z)=y z(y-z)=0 .
$$

The solutions are (up to scaling):

$$
\{(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)\} .
$$

Eigenvectors of Odeco Tensors

If $T=\sum_{i=1}^{n} \lambda_{i} v_{i}^{\otimes d}$ is an odeco tensor, i.e. v_{1}, \ldots, v_{n} are orthonormal, then the vectors $v_{k}, k=1, \ldots, n$ are eigenvectors of T with corresponding eigenvalues $\lambda_{k}, k=1, \ldots, n$:

$$
T v_{k}^{d-1}=\sum_{i=1}^{n} \lambda_{i} v_{k}\left(v_{k} \cdot v_{i}\right)^{d-1}=\lambda_{k} v_{k}
$$

Eigenvectors of Odeco Tensors

If $T=\sum_{i=1}^{n} \lambda_{i} v_{i}^{\otimes d}$ is an odeco tensor, i.e. v_{1}, \ldots, v_{n} are orthonormal, then the vectors $v_{k}, k=1, \ldots, n$ are eigenvectors of T with corresponding eigenvalues $\lambda_{k}, k=1, \ldots, n$:

$$
T v_{k}^{d-1}=\sum_{i=1}^{n} \lambda_{i} v_{k}\left(v_{k} \cdot v_{i}\right)^{d-1}=\lambda_{k} v_{k}
$$

- Is there an easy way of finding these vectors, i.e. finding the orthogonal decomposition of an odeco tensor?

Eigenvectors of Odeco Tensors

If $T=\sum_{i=1}^{n} \lambda_{i} v_{i}^{\otimes d}$ is an odeco tensor, i.e. v_{1}, \ldots, v_{n} are orthonormal, then the vectors $v_{k}, k=1, \ldots, n$ are eigenvectors of T with corresponding eigenvalues $\lambda_{k}, k=1, \ldots, n$:

$$
T v_{k}^{d-1}=\sum_{i=1}^{n} \lambda_{i} v_{k}\left(v_{k} \cdot v_{i}\right)^{d-1}=\lambda_{k} v_{k}
$$

- Is there an easy way of finding these vectors, i.e. finding the orthogonal decomposition of an odeco tensor?
- Are these all of the eigenvectors of an odeco tensor?

Robust Eigenvectors

Definition

A unit vector $u \in \mathbb{R}^{n}$ is a robust eigenvector of a tensor $T \in S^{d}\left(\mathbb{R}^{n}\right)$ if there exists $\epsilon>0$ such that for all $\theta \in \mathcal{B}_{\epsilon}(u)=\left\{u^{\prime}:\left\|u-u^{\prime}\right\|<\epsilon\right\}$, repeated iteration of the map

$$
\begin{equation*}
\theta \mapsto \frac{T \theta^{d-1}}{\left\|T \theta^{d-1}\right\|} \tag{1}
\end{equation*}
$$

starting from θ converges to u.

Theorem (Anandkumar et al.)
Let $d=3$ and let T have an orthogonal decomposition $T=\sum_{i=1}^{n} \lambda_{i} v_{i}^{\otimes d}$ as in the definition.

1. The set of $\theta \in \mathbb{R}^{n}$ which do not converge to some v_{i} under repeated iteration of (1) has measure 0 .
2. The set of robust eigenvectors of T is equal to $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$.

The Tensor Power Method

The tensor power method consists of repeated iteration of the map

$$
u \mapsto \frac{T u^{d-1}}{\left\|T u^{d-1}\right\|}
$$

or equivalently,

$$
u \mapsto \frac{\nabla f(u)}{\|\nabla f(u)\|}
$$

Algorithm

Input: An odeco tensor T.
Output: An orthogonal representation of T.
Repeat
Find $v_{i} \leftarrow$ power method output starting from a random $u \in \mathbb{R}^{n}$.
Recover $\lambda_{i}=T \cdot v_{i}^{d}$.
$T \leftarrow T-\lambda_{i} v_{i}^{\otimes d}$.
Return v_{1}, \ldots, v_{n} and $\lambda_{1}, \ldots, \lambda_{n}$.

The Number of Eigenvectors of a Tensor

Recall: Given a tensor $T \in S^{d}\left(\mathbb{C}^{n}\right)$ with corresponding polynomial f, the eigenvectors $x \in \mathbb{C}^{n}$ are the solutions to the equations given by the 2×2 minors of the matrix

$$
[\nabla f(x) \mid x] .
$$

Theorem (Sturmfels and Cartwright)
If a tensor $T \in S^{d}\left(\mathbb{C}^{n}\right)$ has finitely many eigenvectors, then their number is $\frac{(d-1)^{n}-1}{d-2}$.

Eigenvectors of Odeco Tensors

Example

Let $m=n=3$ and consider the matrix with orthogonal rows $V=\left(\begin{array}{ccc}1 & 3 & 1 \\ -2 & 1 & -1 \\ 4 & 1 & -7\end{array}\right)$.

$$
\begin{gathered}
f(x, y, z)=(x+3 y+z)^{3}+(-2 x+y-z)^{3}+(4 x+y-7 z)^{3} \\
=57 x^{3}+69 x^{2} y+33 x y^{2}+29 y^{3}-345 x^{2} z-138 x y z+3 y^{2} z+585 x z^{2}+159 y z^{2}-343 z^{3} .
\end{gathered}
$$

Then, the eigenvectors satisfy the equations given by the 2×2 minors of

$$
\left[\begin{array}{cc}
171 x^{2}+138 x y+33 y^{2}-690 x z-138 y z+585 z^{2} & x \\
69 x^{2}+66 x y+87 y^{2}-138 x z+6 y z+159 z^{2} & y \\
-345 x^{2}-138 x y+3 y^{2}+1170 x z+318 y z-1029 z^{2} & z
\end{array}\right] .
$$

Let $I \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be the ideal generated by the 2×2 minors of the matrix $[\nabla f(x) \mid x]$.
Then, $\mathcal{V}(I)$ is the variety of eigenvectors of f.

Eigenvectors of Odeco Tensors

Example (...continued)

We use the computer algebra software Macaulay2 to decompose the ideal I :

$$
\begin{aligned}
I= & \langle-y+3 z, x-z\rangle \bigcap\langle y+z, x-2 z\rangle \bigcap\langle 7 y+z, 7 x+4 z\rangle \\
& \bigcap\langle 64 y+61 z, 64 x-119 z\rangle \bigcap\langle-29 y+109 z, 29 x-40 z\rangle \\
& \bigcap\langle 2 y+5 z, 46 x-101 z\rangle \bigcap\langle 85 y+229 z, 85 x-206 z\rangle .
\end{aligned}
$$

In other words, the set of eigenvectors is the union of the solutions to the much simpler systems of equations above.

Eigenvectors of Odeco Tensors

Odeco tensors are nice because we can characterize all of their eigenvectors.
Theorem
Let $f \in S^{d}\left(\mathbb{C}^{n}\right)$ be an odeco tensor with $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \lambda_{i}(V x)_{i}^{d}$, where V is an orthogonal matrix. Then, f has $\frac{(d-1)^{n}-1}{d-2}$ eigenvectors, which represent all of the fixed points of the gradient map in projective space $\mathbb{C P}^{n}$. Explicitly, the eigenvectors are

$$
\begin{aligned}
& \left(x_{1}: \cdots: x_{n}\right)= \\
& =V^{T}\left(\eta_{1} \lambda_{1}^{-\frac{1}{d-2}}: \ldots: \eta_{k-1} \lambda_{k-1}^{-\frac{1}{d-2}}: \lambda_{k}^{-\frac{1}{d-2}}: 0: \ldots: 0\right)^{T},
\end{aligned}
$$

where $k=1, \ldots, n$ and $\eta_{1}, \ldots, \eta_{k-1}$ are $d-2^{\text {nd }}$ roots of unity.

Eigenvectors of Odeco Tensors

Example ($d=3, n=3$)
Let

$$
f(x, y, z)=x^{3}+y^{3}+z^{3} .
$$

Then, $V=I$, the identity matrix and the eigenvectors of f are:

$$
\begin{aligned}
& k=1(1: 0: 0)^{T},(0: 1: 0)^{T},(0: 0: 1)^{T} \\
& k=2(1: 1: 0)^{T},(1: 0: 1)^{T},(0: 1: 1)^{T} \\
& k=3(1: 1: 1)^{T} .
\end{aligned}
$$

Eigenvectors of Odeco Tensors

Example ($\mathrm{n}=3, \mathrm{~d}=3$)

$$
\begin{aligned}
& \quad f(x, y, z)=(x+3 y+z)^{3}+(-2 x+y-z)^{3}+(4 x+y-7 z)^{3} \\
& =\sqrt{11}^{3}\left(\frac{1}{\sqrt{11}}(x+3 y+z)\right)^{3}+\sqrt{6}^{3}\left(\frac{1}{\sqrt{6}}(-2 x+y-z)\right)^{3}+\sqrt{66}^{3}\left(\frac{1}{\sqrt{66}}(4 x+y-7 z)\right)^{3}, \\
& \text { and } \lambda_{1}=\sqrt{11}^{3}, \lambda_{2}=\sqrt{6}^{3}, \lambda_{3}=\sqrt{66}^{3}, v=\left(\begin{array}{c}
\frac{1}{\sqrt{111}}(1,3,1) \\
\frac{\frac{1}{\sqrt{6}}}{\sqrt{6}}(-2,1,-1) \\
\frac{1}{\sqrt{66}}(4,1,-7)
\end{array}\right) \text {. Then, the }
\end{aligned}
$$

eigenvectors are

$$
\begin{aligned}
k=1 & V^{T}\left(\lambda_{1}^{-1}: 0: 0\right)=(1: 3: 1), \quad V^{T}\left(0: \lambda_{2}^{-1}: 0\right)=(-2: 1: 0), \quad V^{T}(0: 0: \\
& \left.\lambda_{3}^{-1}\right)=(4: 1:-7) .
\end{aligned}
$$

$$
k=2 V^{\top}\left(\lambda_{1}^{-1}: \lambda_{2}^{-1}: 0\right)=(206:-229: 85), \quad V^{\top}\left(\lambda_{1}^{-1}: 0: \lambda_{3}^{-1}\right)=(40: 109:
$$

$$
\text { 29), } \quad V^{T}\left(0: \lambda_{2}^{-1}: \lambda_{3}^{-1}\right)=(119:-61: 64)
$$

$$
k=3 V^{\top}\left(\lambda_{1}^{-1}: \lambda_{2}^{-1}: \lambda_{3}^{-1}\right)=(101:-230: 46)
$$

The Set of Odeco Tensors

- Parametric representation:

The set of orthogonally decomposable tensors can be parametrized by $\mathbb{K}^{n} \times O_{n}(\mathbb{K})$:

$$
\lambda, V \mapsto \sum_{i=1}^{n} \lambda_{i}\left(v_{i} \cdot x\right)^{n}
$$

- Implicit representation:

The set of orthogonally decomposable tensors can also be represented as the solutions to a set of equations.

Definition

The odeco variety is the Zariski closure of the set of all odeco tensors in $S^{d}\left(\mathbb{C}^{n}\right)$.
Goal: find equations defining this variety.

The Odeco Variety

Let $T \in S^{d}\left(\mathbb{C}^{n}\right)$. Let \mathcal{F} be the set of the following equations:
fix $i_{1}, \ldots, i_{d-3} \in\{1,2, \ldots, n\}$, for each $i<j, k<I \in\{1,2, \ldots, n\}$, consider the equation

$$
\begin{aligned}
& p_{i_{1}, \ldots, i_{d-3}, i, j, k, l}:= \\
& =\sum_{s=1}^{n} T_{i_{1}, \ldots, i_{d-3}, i, j, s} T_{i_{1}, \ldots, i_{d-3}, k, l, s}-T_{i_{1}, \ldots, i_{d-3}, i, l, s} T_{i_{1}, \ldots, i_{d-3}, k, j, s}
\end{aligned}
$$

Lemma

The equations \mathcal{F} vanish on the set of orthogonally decomposable tensors.

The Odeco Variety

Conjecture

The odeco variety is given by $\mathcal{V}(\mathcal{F})$.

Thank you!

References

易
A．Anandkumar，R．Ge，D．Hsu，S．Kakade，and M．Telegarsky：Tensor Decompositions for Learning Latent Variable Models
嘓 A．Anandkumar，D．Hsu，and S．Kakade：A Method of Moments for Mixture Models and Hidden Markov Models
圊
J．Brachat，P．Common，B．Mourrain，and E．Tsigaridas：Symmetric Tensor Decomposition

P．Common，G．Golub，L．Lim，and B．Mourrain：Symmetric Tensors and Symmetric Tensor RankD．Cartwright and B．Sturmfels：The Number of Eigenvalues of a Tensor
D．Eisenbud and B．Sturmfels：Binomial Ideals
L．Oeding and G．Ottaviani：Eigenvectors of Tensors and Algorithms for Waring Decomposition

