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Factor analysis

d

d

• Sum of “few” rank one matrices (k < d )

Assumption:  matrix has a “simple 
explanation”

𝑀 = 𝑎1 ⊗ 𝑏1 + 𝑎2 ⊗ 𝑏2 + ⋯ + 𝑎𝑘 ⊗ 𝑏𝑘

M

Explain using few unobserved variables

Qn [Spearman].  Can we find the ``desired’’ explanation ?



The rotation problem

Any suitable “rotation” of the vectors gives a different decomposition

A BT = A BTQ QT

Often difficult to find “desired” decomposition..

𝑀 = 𝑎1 ⊗ 𝑏1 + 𝑎2 ⊗ 𝑏2 + ⋯ + 𝑎𝑘 ⊗ 𝑏𝑘



Multi-dimensional arrays

Tensors

dd d

d d

• 𝑡 dimensional array ≡ tensor of order 𝑡 ≡ 𝑡-tensor

• Represent higher order correlations, partial derivatives, etc.

• Collection of matrix (or smaller tensor) slices



3-way factor analysis

Tensor can be written as a sum of few rank-one tensors

𝑇 =  
𝑖=1

𝑘

𝑎𝑖⨂𝑏𝑖⨂𝑐𝑖

Rank(T) = smallest k s.t. T written as sum of k rank-1 tensors

3-Tensors:

T 𝑎1 𝑎2 𝑎𝑘

𝑐1 𝑐2 𝑐𝑘

• Rank of 3-tensor  𝑇𝑑×𝑑×𝑑 ≤ 𝑑2 . Rank of t-tensor   𝑇𝑑×⋯×𝑑 ≤ 𝑑𝑡−1

Thm [Harshman’70, Kruskal’77]. Rank-𝑘 decompositions for 3-
tensors (and higher orders)  unique under mild conditions.

3-way decompositions overcome rotation problem !



Learning Probabilistic Models:
Parameter Estimation 

Learning goal:   Can the parameters of the model be learned from 
polynomial samples generated by the model ?

• EM algorithm – used in practice, but converges to local optima

HMMs 
for speech recognition

Mixture of Gaussians
for clustering points

Question: Can given data be “explained” by a simple 
probabilistic model?

• Algorithms have exponential time & sample complexity

Multiview models



Parameters
• Mixing weights: 𝑤1, 𝑤2, … , 𝑤𝑘

• Gaussian 𝐺𝑖 : 𝜇𝑖 , Σ𝑖

mean 𝜇𝑖 , covariance Σ𝑖 : diagonal

Learning problem: Given many 

sample points, find (𝑤𝑖 , 𝜇𝑖 , Σ𝑖)

Probabilistic model for Clustering in 𝒅-dims

Mixtures of (axis-aligned) Gaussians

• Algorithms use 𝐎(𝐞𝐱𝐩 𝒌 . 𝒑𝒐𝒍𝒚(𝒅)) samples and time [FOS’06, MV’10]

• Lower bound of Ω(𝐞𝐱𝐩(𝒌)) [MV’10] in worst case

ℝ𝑑

𝜇𝑖

𝑥

Aim: 𝒑𝒐𝒍𝒚(𝒌, 𝒅) guarantees in realistic settings



Method of Moments and 
Tensor decompositions

step 1. compute a tensor whose decomposition 

encodes model parameters

step 2. find decomposition (and hence 

parameters)

⋱

𝑑

𝑑

𝑑

⋅⋅ ⋯ ⋅
⋮ 𝐸 𝑥𝑖𝑥𝑗𝑥𝑘

⋮ ⋯

𝑻 =  

𝒊=𝟏

𝒌

𝒘𝒊 𝝁𝒊 ⊗ 𝝁𝒊 ⊗ 𝝁𝒊

• Uniqueness  ⟹ Recover parameters 𝑤𝑖 and 𝜇𝑖

• Algorithm for Decomposition ⟹ efficient learning

[Chang] [Allman, Matias, Rhodes]

[Anandkumar,Ge,Hsu, Kakade, Telgarsky]



What is known about Tensor 
Decompositions ?

Thm [Kruskal’77]. Rank-𝑘 decompositions for 3-tensors 
unique (non-algorithmic)  when 𝑘 ≤ 3𝑑/2 ! 

Thm [Jennrich via Harshman’70]. Find unique rank-𝑘
decompositions for 3-tensors  when 𝑘 ≤ 𝑑 ! 

• Uniqueness proof is algorithmic !
• Called Full-rank case. No symmetry or orthogonality needed.

• Rediscovered in [Leurgans et al 1993] [Chang 1996]

Thm [DeLathauwer, Castiang, Cardoso’07].
Algorithm for 4-tensors of rank 𝑘 generically when 𝑘 ≤ 𝑐. 𝑑2

Thm [Chiantini Ottaviani‘12].
Uniqueness (non-algorithmic) of 3-tensors of rank 𝑘 ≤ 𝑐. 𝑑2 generically



Uniqueness and Algorithms resilient to noise of 1/poly(d,k) ?

Robustness to Errors 

Beware : Sampling error 

Empirical estimate    𝑇 =𝜖  𝑖=1
𝑘 𝑤𝑖 𝜇𝑖 ⨂ 𝜇𝑖 ⨂ 𝜇𝑖

With poly(d, k) samples,  error ϵ ≈ 1/poly(d, k)

Thm [BCV’14]. Robust version of Kruskal Uniqueness theorem 
(non-algorithmic) with 1/𝑝𝑜𝑙𝑦(𝑑, 𝑘) error

Thm. Jennrich’s polynomial time algorithm for Tensor 
Decompositions robust up to 1/𝑝𝑜𝑙𝑦(𝑑, 𝑘) error

Open Problem: Robust version of generic results[De Lauthewer et al]?



Algorithms for Tensor Decompositions

Polynomial time algorithms when rank 𝑘 ≤ 𝑑 [Jennrich]

NP-hard when rank 𝑘 > 𝑑 in worst case [Hastad, Hillar-Lim]

Overcome worst-case intractability using Smoothed Analysis

 Polynomial time algorithms* for robust Tensor decompositions

for rank k >> d    (rank is any polynomial in dimension)

*Algorithms 𝑝𝑜𝑙𝑦(𝑑, 𝑘, 1/𝜖) for recovery up to 𝜖 error in . 𝐹

This talk 



Efficient Learning when no. of clusters/ topics k ≤ dimension d

[Chang 96, Mossel-Roch 06, Anandkumar et al. 09-14]
• Learning Phylogenetic trees [Chang,MR]
• Axis-aligned Gaussians [HK]
• Parse trees [ACHKSZ,BHD,B,SC,PSX,LIPPX]
• HMMs [AHK,DKZ,SBSGS]
• Single Topic models [AHK], LDA [AFHKL]
• ICA [GVX] … 
• Overlapping Communities [AGHK] … 

Implications for Learning

``Full rank’’ or ``Non-degenerate’’ setting

Known only in restricted cases: 

No. of clusters 𝑘 ≤ No. of dims 𝑑



Overcomplete Learning Setting

Number of clusters/topics/states  𝐤 ≫ dimension 𝐝

Computer Vision

Previous algorithms do not work when k > d!

Speech

Need polytime decomposition of Tensors of rank 𝒌 ≫ 𝒅?



Smoothed Analysis

[Spielman & Teng 2000]

• Small random perturbation of input
makes instances easy

• Best polytime guarantees in the absence 
of any worst-case guarantees

Smoothed analysis guarantees:

• Worst instances are isolated

Simplex algorithm solves LPs efficiently 
(explains practice).



Today’s talk: Smoothed Analysis for 
Learning  [BCMV STOC’14]

• First Smoothed Analysis treatment for Unsupervised Learning

Thm. Polynomial time algorithms for learning axis-aligned 
Gaussians, Multview models etc. even in ``overcomplete settings’’.

Mixture of Gaussians

Thm. Polynomial time algorithms for tensor decompositions in 
smoothed analysis setting.

based on 

Multiview models



Smoothed Analysis for Learning

Learning setting (e.g. Mixtures of Gaussians)

Worst-case instances: Means 𝝁𝒊 in pathological configurations

Means not in adversarial configurations 
in real-world!

What if means 𝝁𝒊 perturbed slightly ?
𝝁𝒊  𝝁𝒊

Generally, parameters of the model are perturbed slightly. 



Smoothed Analysis for Tensor Decompositions

1. Adversary chooses tensor 

3. Input:  𝑇. Analyse algorithm on  𝑇.

2.  𝑎𝑖
(𝑗)

is random 𝜌-perturbation of 𝑎𝑖
(𝑗)

i.e. add independent (gaussian) random vector of length ≈ 𝜌.

𝑇𝑑×𝑑×⋯×𝑑 =  
𝑖=1

𝑘

𝑎𝑖
(1)

⨂𝑎𝑖
2

⨂ … ⨂𝑎𝑖
𝑡

T 𝑎1
(1)

𝑎2
(1)

𝑎𝑘
(1)

𝑎1
(3)

𝑎2
(3)

𝑎𝑘
(3)

 𝑇 =  
𝑖=1

𝑘

 𝑎𝑖
(1)

⨂ 𝑎𝑖
2

⨂ … ⨂ 𝑎𝑖
𝑡

+ noise

Factors of the Decomposition are perturbed



Algorithmic Guarantees

Thm [BCMV’14]. Polynomial time algorithm for decomposing t-tensor 

(d-dim) in smoothed analysis model when rank 𝒌 ≤ 𝒅(𝒕−𝟏)/𝟐 w.h.p.

Running time, sample complexity = 𝒑𝒐𝒍𝒚𝒕 𝒅, 𝒌,
𝟏

𝝆
.

Guarantees for order-t tensors in d-dims (each) 

Rank of the t-tensor=k (number of clusters)

Previous Algorithms

𝑘 ≤ 𝑑

Algorithms (smoothed case)
𝑘 ≤ 𝑑(𝑡−1)/2

Corollary. Polytime algorithms (smoothed analysis) for 
Mixtures of axis-aligned Gaussians, Multiview models 
etc. even in overcomplete setting i.e.  no. of clusters  k ≤
dimC for any constant C w.h.p. 



Interpreting Smoothed Analysis 
Guarantees

Time, sample complexity = 𝑝𝑜𝑙𝑦𝑡 𝑑, 𝑘,
1

𝜌
.

Works with probability 1-exp(-𝜌𝑑3−𝑡
)

• Exponential small failure probability (for constant order t)

Smooth Interpolation between Worst-case and Average-case

• 𝜌 = 0 : worst-case

• 𝜌 is large:  almost random vectors. 

• Can handle 𝜌 inverse-polynomial in 𝑑, 𝑘



Algorithm 
Details



Algorithm Outline

• Helps handle the over-complete setting (k ≫ 𝑑)

[Jennrich 70] A simple (robust) algorithm for 3-tensor T when:
𝜎𝑘 𝐴 , 𝜎𝑘 𝐵 , 𝜎2(𝐶) ≥ 1/𝑝𝑜𝑙𝑦(𝑑, 𝑘)

2. For higher order tensors using ``tensoring / flattening’’. 

1. An algorithm for 3-tensors in the ``full rank setting’’ (𝐤 ≤ 𝒅).

𝐴 (𝑑 × 𝑘)

𝑇 =  
𝑖=1

𝑘

𝐴𝑖⨂𝐵𝑖⨂𝐶𝑖Recall:
𝐴𝑖

⋱

𝑑

𝑑 𝑇 Aim: Recover A, B, C

• Any algorithm for full-rank (non-orthogonal) tensors suffices



Blast from the Past

⋱

𝑇

𝑻 ≈𝝐  
𝑖=1

𝑘

𝑎𝑖⨂𝑏𝑖⨂𝑐𝑖

Recall

𝐴 (𝑑 × 𝑘)

𝑎𝑖

Aim: Recover A, B, C

Qn. Is this algorithm robust to errors ?

Yes !   Needs perturbation bounds for eigenvectors.
[Stewart-Sun] 

Thm. Efficiently decompose T=𝜖  𝑖=1
𝑘 𝑎𝑖⨂𝑏𝑖⨂𝑐𝑖

and recover 𝐴, 𝐵, 𝐶 upto 𝜖. 𝑝𝑜𝑙𝑦(𝑑, 𝑘) error
when   1) 𝐴, 𝐵 are min-singular-value ≥ 1/poly(d)

2) C doesn’t have parallel columns.

[Jennrich via Harshman 70]

Algorithm for 3-tensor 𝑇 =  𝑖=1
𝑘 𝑎𝑖⨂𝑏𝑖⨂𝑐𝑖

• A, B are full rank (rank=𝑘)
• C has rank ≥2

• Reduces to matrix eigen-decompositions



Consider rank 1 tensor

Slices of tensors

s’th slice: 

s’th slice:

All slices have a common diagonalization (𝑨, 𝑪)!

𝑇 =  

𝑖=1

𝑘

𝑎𝑖 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖  

𝑖=1

𝑘

𝑏𝑖 𝑠 . (𝑎𝑖 ⊗ 𝑐𝑖)

Random combination 𝑤 of slices:  

𝑖=1

𝑘

𝑏𝑖 , 𝑤 . (𝑎𝑖 ⊗ 𝑐𝑖)



Two matrices with common diagonalization (𝑋 , 𝑌)

Simultaneous diagonalization

If  1) 𝑋, 𝑌 are invertible and 

2) 𝐷1, 𝐷2 have unequal non-zero entries, 

We can find 𝑋, 𝑌 by matrix diagonalization!



Algorithm:

1. Take random combination along w1 as 𝑀1.

2. Take random combination along w2 as 𝑀2.

3. Find eigen-decomposition of 𝑀1𝑀2
† to get 𝐴. Similarly B,C.

Decomposition algorithm [Jennrich]

𝑇 ≈𝜖  

𝑖=1

𝑘

𝑎𝑖 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖

Thm. Efficiently decompose T=𝜖  𝑖=1
𝑘 𝑎𝑖⨂𝑏𝑖⨂𝑐𝑖 and recover 

𝐴, 𝐵, 𝐶 up to 𝜖. 𝑝𝑜𝑙𝑦(𝑑, 𝑘) error (in Frobenius norm) when   
1) 𝐴, 𝐵 are full rank i.e. min-singular-value ≥ 1/poly(d)
2) C doesn’t have parallel columns (in a robust sense).



Overcomplete Case 

into Techniques 



Mapping to Higher Dimensions

How do we handle the case rank 𝒌 = 𝛀(𝒅𝟐)? 

(or even vectors with “many” linear dependencies?)

1. Tensor corresponding to map 𝑓 computable using the data 𝑥

2. 𝑓 𝑎1 , 𝑓 𝑎2 , … , 𝑓(𝑎𝑘) are linearly independent (min singular value)

map 𝑓

ℝ𝑑

𝑓(𝑎1)

𝑓(𝑎𝑖) ℝ𝑑2

𝑓(𝑎𝑘)
𝑓(𝑎2)

𝑎1

𝑎2

𝑎𝑘

𝑎𝑖

• Reminiscent of Kernels in SVMs

𝒇 maps parameter/factor vectors to higher dimensions s.t.

Factor matrix 
A



A mapping to higher dimensions

Qn: are these vectors 𝒂𝒊 ⊗ 𝒂𝒊 linearly independent?

Is ``essential dimension’’ 𝛀(𝒅𝟐)?

Outer product / Tensor products:

Map 𝑓 𝑎𝑖 = 𝑎𝑖 ⊗ 𝑎𝑖 Map 𝒇

Basic Intuition:

1. 𝑎𝑖 ⊗ 𝑎𝑖 has 𝑑2 dimensions. 

2. For non-parallel unit vectors 𝑎𝑖 and 𝑎𝑗 , distance increases:

𝑎𝑖 ⊗ 𝑎𝑖 , 𝑎𝑗 ⊗ 𝑎𝑗 = 𝑎𝑖 , 𝑎𝑗
2

< | 𝑎𝑖 , 𝑎𝑗 |

• Tensor is 𝐸[𝑥⊗2 ⊗ 𝑥⊗2 ⊗ 𝑥⊗2]



Bad cases

Beyond Worst-case analysis
Can we hope for “dimension” to multiply “typically”?

Bad example where 𝑘 > 2𝑑:
• Every 𝑑 vectors of  U and V are linearly independent
• But (2𝑑 − 1) vectors of Z are linearly dependent ! 

𝑉(𝑑 × 𝑘)

𝑣𝑖

𝑈(𝑑 × 𝑘)

𝑢𝑖

Z (𝑑2 × 𝑘)

𝑧𝑖=

𝑢𝑖 ⨂𝑣𝑖

Lem. Dimension (K-rank) under tensoring is additive.

U, V have rank=d.  Vectors 𝑧𝑖 = 𝑢𝑖 ⨂𝑣𝑖 ∈ ℝ𝑑2

Strategy does not work in the worst-case

But, bad examples are pathological and hard to construct!



Product vectors & linear structure

• Easy to compute tensor with 𝑓 𝑎𝑖 as factors / parameters  

(``Flattening’’ of 3t-order moment tensor)

• New factor matrix is full rank using Smoothed Analysis.

Theorem. For any matrix 𝐴𝑑×𝑘, for 𝑘 < 𝑑𝑡/2, 

𝜎𝑘
 𝐴 ≥ 1/𝑝𝑜𝑙𝑦 𝑘, 𝑑,

1

𝜌
with probability 1- exp(-poly(d)).

Map 𝒇(𝒂𝒊) = 𝒂𝒊
⊗𝒕

𝐴 (𝑑 × 𝑘)

𝑎𝑖

 𝐴 (𝑑 × 𝑘)

 𝑎𝑖

random 
𝜌-perturbation



Proof sketch (t=2)

Main Issue: perturbation before product.. 

• easy if columns perturbed after tensor 
product (simple anti-concentration bounds)

Technical component

show perturbed product vectors behave like 

random vectors in 𝑅𝑑2

𝑑2

𝑘

𝑈

Prop. For any matrix 𝐴, matrix 𝑈 below (𝑘 < 𝑑2/2) has 

𝜎𝑘
 𝐴 ≥ 1/𝑝𝑜𝑙𝑦 𝑘, 𝑑,

1

𝜌
with probability 1- exp(-poly(d)).

• only 2𝑑 bits of randomness in 𝑑2 dims
• Block dependencies



Projections of product vectors

Question. Given any vector 𝑎 ∈ ℝ𝑑 and gaussian 𝜌-perturbation 

 𝑎 = 𝑎 + 𝜖, does  𝒂 ⊗  𝒂 have projection 𝑝𝑜𝑙𝑦(𝜌,
1

𝑑
) onto any given 

𝑑2/2 dimensional subspace 𝑆 ⊂ 𝑅𝑑2
with prob. 1 − exp(− 𝑑) ?

Easy : Take 𝑑2 dimensional 𝑥, 𝜌-perturbation to 𝑥

will have projection > 1/𝑝𝑜𝑙𝑦(𝜌) on to S w.h.p.
anti-concentration 

for polynomials 
implies this with 

probability 1-1/poly

….

...  𝑎 𝑑 ⊗ 𝑏

Much tougher for product of perturbations!
(inherent block structure)



Projections of product vectors

dot product of 

block with 

=

Question. Given any vector 𝑎, 𝑏 ∈ ℝ𝑑 and gaussian 𝜌-perturbation 

 𝑎,  𝑏, does  𝒂 ⊗  𝒃 have projection 𝑝𝑜𝑙𝑦(𝜌,
1

𝑑
) onto any given 𝑑2/2

dimensional subspace 𝑆 ⊂ 𝑅𝑑2
with prob. 1 − exp(− 𝑑) ?

𝑑2

2

𝑑2  𝑎 𝑑 ⊗ 𝑏

𝛱𝑆 is projection matrix 
onto 𝑆

𝛱𝑆(𝑥) is a  
𝑑2

2
× 𝑑 matrix



Two steps of Proof..

2. If Π𝑆( 𝑏) has 𝑟 eigenvalues > 𝑝𝑜𝑙𝑦(𝜌,
1

𝑑
), then w.p. 1 − exp(−𝑟)

(over perturbation of  𝑎),  𝒂 ⊗  𝒃 has large projection onto 𝑆.

follows easily analyzing 

projection of a vector to 

a dim-k space

will show with 𝑟 = √𝑑

1. W.h.p. (over perturbation of b), Π𝑆( 𝑏) has at least 

𝑟 eigenvalues > 𝑝𝑜𝑙𝑦(𝜌,
1

𝑑
)



Suppose: Choose ΠS first 𝑑 × 𝑑 “blocks” in ΠS were orthogonal...

….
….

….

Structure in any subspace S

(restricted to 𝑑
cols)

• Entry (i,j) is:

• Translated i.i.d. Gaussian matrix!

has many big eigenvalues

𝑑

Π𝑆
 𝑏 | 𝑑 =

𝑣𝑖𝑗 ∈ ℝ𝑑



Main claim: every 𝑐. 𝑑2 dimensional space 𝑆 has ~√𝑑 vectors 

with such a structure..

….

….

….

Property: picked blocks (d dim vectors) have “reasonable” 

component orthogonal to span of rest..

Finding Structure in any subspace S 

Earlier argument goes through even with blocks not fully 

orthogonal!

𝑣1

𝑣2

𝑣√𝑑



Idea: obtain “good” columns one by one..

• Show there exists a block with many linearly 

independent “choices”

• Fix some choices and argue the same property holds, …

Main claim (sketch)..

Generalization: similar result holds for higher order 

products, implies main result.

crucially use the fact 

that we have a Ω(𝑑2)
dim subspace

• Uses a delicate inductive argument



Summary

• Polynomial time Algorithms  in 

Overcomplete settings:

• Smoothed Analysis for Learning Probabilistic models.

Guarantees for order-t tensors in d-dims (each) 

Rank of the t-tensor=k (number of clusters)

Previous Algorithms

𝑘 ≤ 𝑑

Algorithms (smoothed case)
𝑘 ≤ 𝑑(𝑡−1)/2

• Flattening gets beyond full-rank conditions: 

Plug into results on Spectral Learning of Probabilistic models



Future Directions

Smoothed Analysis for other Learning problems ?

Better guarantees using Higher-order moments

• Better bounds w.r.t. smallest singular value ?

Better Robustness to Errors

• Modelling errors?

• Tensor decomposition algorithms that more robust to errors ?

promise: [Barak-Kelner-Steurer’14] using Lasserre hierarchy

Better dependence on rank k vs dim d (esp. 3 tensors)

• Next talk by Anandkumar: Random/ Incoherent decompositions



Thank You!

Questions?


