Smoothed Analysis of Tensor Decompositions and Learning

Aravindan Vijayaraghavan

$CMU \Rightarrow Northwestern University$

based on joint works with

Aditya Bhaskara Google Research Moses Charikar Princeton Ankur Moitra MIT

Factor analysis

Explain using few unobserved variables

• Sum of "few" rank one matrices (*k* < *d*)

$$M = a_1 \otimes b_1 + a_2 \otimes b_2 + \dots + a_k \otimes b_k$$

Qn [Spearman]. Can we find the ``desired'' explanation ?

The rotation problem

Any suitable "rotation" of the vectors gives a different decomposition

$$M = a_1 \otimes b_1 + a_2 \otimes b_2 + \dots + a_k \otimes b_k$$

Often difficult to find "desired" decomposition..

Multi-dimensional arrays

- t dimensional array \equiv tensor of order $t \equiv t$ -tensor
- Represent higher order correlations, partial derivatives, etc.
- Collection of matrix (or smaller tensor) slices

3-way factor analysis

Tensor can be written as a sum of few rank-one tensors

Rank(T) = smallest k s.t. T written as sum of k rank-1 tensors

• Rank of 3-tensor $T_{d \times d \times d} \leq d^2$. Rank of t-tensor $T_{d \times \dots \times d} \leq d^{t-1}$

Thm [Harshman'70, Kruskal'77]. Rank-*k* decompositions for 3-tensors (and higher orders) unique under mild conditions.

3-way decompositions overcome rotation problem !

Learning Probabilistic Models: Parameter Estimation

Question: Can given data be "explained" by a simple probabilistic model?

Mixture of Gaussians for clustering points

HMMs for speech recognition

Multiview models

Learning goal: Can the parameters of the model be learned from polynomial samples generated by the model ?

Algorithms have exponential time & sample complexity

EM algorithm – used in practice, but converges to local optima

Mixtures of (axis-aligned) Gaussians

Probabilistic model for Clustering in *d***-dims**

- Algorithms use O(exp(k). poly(d)) samples and time [FOS'06, MV'10]
- Lower bound of $\Omega(\exp(k))$ [MV'10] in worst case

Aim: poly(k, d) guarantees in realistic settings

Method of Moments and Tensor decompositions

step 1. compute a tensor whose decomposition encodes model parameters
step 2. find decomposition (and hence parameters)

$$\Rightarrow \quad T = \sum_{i=1}^k w_i \ \mu_i \otimes \mu_i \otimes \mu_i$$

• Uniqueness \implies Recover parameters w_i and μ_i

• Algorithm for Decomposition \Rightarrow efficient learning

[Chang] [Allman, Matias, Rhodes] [Anandkumar,Ge,Hsu, Kakade, Telgarsky]

What is known about Tensor Decompositions ?

Thm [Jennrich via Harshman'70]. Find unique rank-k decompositions for 3-tensors when $k \le d$!

- Uniqueness proof is *algorithmic* !
- Called Full-rank case. No symmetry or orthogonality needed.
- Rediscovered in [Leurgans et al 1993] [Chang 1996]

Thm [Kruskal'77]. Rank-k decompositions for 3-tensors unique (non-algorithmic) when $k \leq 3d/2$!

Thm [Chiantini Ottaviani'12].

Uniqueness (non-algorithmic) of 3-tensors of rank $k \leq c d^2$ generically

Thm [DeLathauwer, Castiang, Cardoso'07].

Algorithm for 4-tensors of rank k generically when $k \leq c d^2$

Robustness to Errors

Empirical estimate $T =_{\epsilon} \sum_{i=1}^{k} w_i \ \mu_i \otimes \mu_i \otimes \mu_i$ With poly(d, k) samples, error $\epsilon \approx 1/\text{poly}(d, k)$

Uniqueness and Algorithms resilient to noise of 1/poly(d,k)?

Thm. Jennrich's polynomial time algorithm for Tensor Decompositions robust up to 1/poly(d, k) error

Thm [BCV'14]. Robust version of Kruskal Uniqueness theorem (non-algorithmic) with 1/poly(d, k) error

Open Problem: Robust version of generic results[De Lauthewer et al]?

Algorithms for Tensor Decompositions

Polynomial time algorithms when rank $k \leq d$ [Jennrich]

NP-hard when rank k > d in worst case [Hastad, Hillar-Lim]

This talk

Overcome worst-case intractability using Smoothed Analysis

 Polynomial time algorithms* for robust Tensor decompositions for rank k >> d (rank is any polynomial in dimension)
 *Algorithms poly(d, k, 1/e) for recovery up to e error in ||. ||_F

Implications for Learning

Known only in restricted cases:

No. of clusters $k \leq No.$ of dims d**``Full rank'' or ``Non-degenerate'' setting**

Efficient Learning when no. of clusters/ topics $k \leq dimension d$

[Chang 96, Mossel-Roch 06, Anandkumar et al. 09-14]

- Learning Phylogenetic trees [Chang,MR]
- Axis-aligned Gaussians [HK]
- Parse trees [ACHKSZ,BHD,B,SC,PSX,LIPPX]
- HMMs [AHK, DKZ, SBSGS]
- Single Topic models [AHK], LDA [AFHKL]
- ICA [GVX] ...
- Overlapping Communities [AGHK] ...

Overcomplete Learning Setting

Number of clusters/topics/states $\mathbf{k} \gg \text{dimension } \mathbf{d}$

 \sim Previous algorithms do not work when k > d!

Need polytime decomposition of Tensors of rank $k \gg d$?

Smoothed Analysis

Simplex algorithm solves LPs efficiently (explains practice).

[Spielman & Teng 2000]

Smoothed analysis guarantees:

- Worst instances are isolated
- Small random perturbation of input makes instances easy
- Best polytime guarantees in the absence of any worst-case guarantees

Today's talk: Smoothed Analysis for Learning [BCMV STOC'14]

• First Smoothed Analysis treatment for Unsupervised Learning

Mixture of Gaussians

Multiview models

Thm. Polynomial time algorithms for learning axis-aligned Gaussians, Multview models etc. *even in* ``*overcomplete settings'*'.

based on

Thm. Polynomial time algorithms for tensor decompositions in smoothed analysis setting.

Smoothed Analysis for Learning

Learning setting (e.g. Mixtures of Gaussians)

Worst-case instances: Means $\{\mu_i\}$ in pathological configurations

Means not in adversarial configurations in real-world!

What if means $\{\mu_i\}$ perturbed slightly ?

Generally, parameters of the model are perturbed slightly.

Smoothed Analysis for Tensor Decompositions

Factors of the Decomposition are perturbed

- 1. Adversary chooses tensor $\mathbf{T} = a_{1}^{(1)} + a_{2}^{(1)} + a_{2}^$
 - *i.e.* add independent (gaussian) random vector of length $\approx \rho$.
- 3. Input: \tilde{T} . Analyse algorithm on \tilde{T} .

$$\tilde{T} = \sum_{i=1}^{k} \tilde{a}_{i}^{(1)} \otimes \tilde{a}_{i}^{(2)} \otimes \dots \otimes \tilde{a}_{i}^{(t)} + \text{noise}$$

Algorithmic Guarantees

Thm [BCMV'14]. Polynomial time algorithm for decomposing t-tensor (d-dim) in smoothed analysis model when rank $k \leq d^{(t-1)/2}$ w.h.p.

Running time, sample complexity = $poly_t(d, k, \frac{1}{o})$.

Corollary. Polytime algorithms (smoothed analysis) for Mixtures of axis-aligned Gaussians, Multiview models etc. even in overcomplete setting i.e. no. of clusters $k \leq \dim^{C}$ for any constant C w.h.p.

Interpreting Smoothed Analysis Guarantees

Time, sample complexity = $poly_t\left(d,k,\frac{1}{\rho}\right)$.

Works with probability $1 - exp(-\rho d^{3^{-t}})$

• Exponential small failure probability (for constant order t)

Smooth Interpolation between Worst-case and Average-case

- $\rho = 0$: worst-case
- ρ is large: almost random vectors.
- Can handle ρ inverse-polynomial in d, k

Algorithm Details

Algorithm Outline

1. An algorithm for 3-tensors in the ``full rank setting" ($k \le d$).

Recall:
$$T = \sum_{i=1}^{k} A_i \otimes B_i \otimes C_i$$

Aim: Recover A, B, C
A (d × k)

[Jennrich 70] A simple (robust) algorithm for 3-tensor T when: $\sigma_k(A), \sigma_k(B), \sigma_2(C) \ge 1/poly(d, k)$

- Any algorithm for full-rank (non-orthogonal) tensors suffices
- 2. For higher order tensors using ``tensoring / flattening".
 - Helps handle the over-complete setting $(k \gg d)$

Blast from the Past

[Jennrich via Harshman 70]

Algorithm for 3-tensor $T = \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i$

- A, B are full rank (rank=k)
- C has rank ≥ 2
- Reduces to matrix eigen-decompositions

Qn. Is this algorithm robust to errors ?

Yes ! Needs perturbation bounds for eigenvectors. [Stewart-Sun]

Thm. Efficiently decompose $T =_{\epsilon} \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i$ and recover A, B, C upto ϵ . poly(d, k) error when 1) A, B are min-singular-value $\geq 1/poly(d)$ 2) C doesn't have parallel columns.

Slices of tensors

Consider rank 1 tensor $x\otimes y\otimes z$ s'th slice: $y_s\cdot (x\otimes z)_k$

$$T = \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i$$

s'th slice:
$$\sum_{i=1}^{k} b_i(s) \cdot (a_i \otimes c_i)$$

All slices have a common diagonalization (A, C)!

Random combination w of slices:

$$\sum_{i=1}^k \langle b_i, w \rangle. (a_i \otimes c_i)$$

Simultaneous diagonalization

Two matrices with common diagonalization (X, Y)

$$M_1 = XD_1Y^T$$
$$M_2 = XD_2Y^T$$
$$M_1M_2^{-1} = XD_1D_2^{-1}X^{-1}$$

If 1) *X*, *Y* are invertible and

2) D₁, D₂ have unequal non-zero entries,
We can find X, Y by matrix diagonalization!

Decomposition algorithm [Jennrich]

$$T \approx_{\epsilon} \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i$$

Algorithm:

- 1. Take random combination along w_1 as M_1 .
- 2. Take random combination along w_2 as M_2 .
- 3. Find eigen-decomposition of $M_1 M_2^{\dagger}$ to get A. Similarly B,C.

Thm. Efficiently decompose $T =_{\epsilon} \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i$ and recover A, B, C up to ϵ . poly(d, k) error (in Frobenius norm) when 1) A, B are full rank i.e. min-singular-value $\geq 1/poly(d)$ 2) C doesn't have parallel columns (in a robust sense).

Overcomplete Case

into Techniques

Mapping to Higher Dimensions

How do we handle the case rank $k = \Omega(d^2)$? (or even vectors with "many" linear dependencies?)

f maps parameter/factor vectors to higher dimensions s.t.

- 1. Tensor corresponding to map f computable using the data x
- 2. $f(a_1), f(a_2), \dots, f(a_k)$ are linearly independent (min singular value)
 - Reminiscent of Kernels in SVMs

A mapping to higher dimensions

Outer product / Tensor products:

 $\operatorname{Map} f(a_i) = a_i \otimes a_i$

• Tensor is $E[x^{\otimes 2} \otimes x^{\otimes 2} \otimes x^{\otimes 2}]$

Basic Intuition:

1. $a_i \otimes a_i$ has d^2 dimensions.

2. For non-parallel unit vectors a_i and a_j , distance increases:

$$\langle a_i \otimes a_i, a_j \otimes a_j \rangle = \langle a_i, a_j \rangle^2 < |\langle a_i, a_j \rangle|$$

Qn: are *these* vectors $a_i \otimes a_i$ linearly independent? Is ``essential dimension'' $\Omega(d^2)$?

Bad cases

U, V have rank=d. Vectors $z_i = u_i \otimes v_i \in \mathbb{R}^{d^2}$

Lem. Dimension (K-rank) under tensoring is additive.

Bad example where k > 2d:

- Every *d* vectors of U and V are linearly independent
- But (2d 1) vectors of Z are linearly dependent !

Strategy does not work in the worst-case

But, bad examples are pathological and hard to construct!

Beyond Worst-case analysis

Can we hope for "dimension" to multiply "typically"?

Product vectors & linear structure

 $\mathsf{Map}\,f(a_i)=a_i^{\otimes t}$

- Easy to compute tensor with f(a_i) as factors / parameters
 (``Flattening'' of 3t-order moment tensor)
- New factor matrix is full rank using Smoothed Analysis.

Proof sketch (t=2)

Prop. For any matrix *A*, matrix *U* below $(k < d^2/2)$ has $\sigma_k(\tilde{A}) \ge 1/poly\left(k, d, \frac{1}{\rho}\right)$ with probability *1-exp(-poly(d))*.

Main Issue: perturbation before product..

- easy if columns perturbed after tensor product (simple anti-concentration bounds)
 - only 2d bits of randomness in d^2 dims
 - Block dependencies

Technical component

show perturbed product vectors behave like random vectors in R^{d^2}

Projections of product vectors

Question. Given any vector $a \in \mathbb{R}^d$ and gaussian ρ -perturbation $\tilde{a} = a + \epsilon$, does $\tilde{a} \otimes \tilde{a}$ have projection $poly(\rho, \frac{1}{d})$ onto any given $d^2/2$ dimensional subspace $S \subset R^{d^2}$ with prob. $1 - \exp(-\sqrt{d})$?

Easy : Take d^2 dimensional x, ρ -perturbation to x will have projection > $1/poly(\rho)$ on to S w.h.p.

Much tougher for product of perturbations! (inherent block structure) anti-concentration for polynomials implies this with probability 1-1/poly

Projections of product vectors

Question. Given any vector $a, b \in \mathbb{R}^d$ and gaussian ρ -perturbation $\tilde{a}, \tilde{b}, \text{ does } \tilde{a} \otimes \tilde{b}$ have projection $poly(\rho, \frac{1}{d})$ onto any given $d^2/2$ dimensional subspace $S \subset R^{d^2}$ with prob. $1 - \exp(-\sqrt{d})$?

Two steps of Proof..

1. W.h.p. (over perturbation of b), $\Pi_S(\tilde{b})$ has at least r eigenvalues > $poly(\rho, \frac{1}{d})$

will show with $r = \sqrt{d}$

2. If $\Pi_S(\tilde{b})$ has r eigenvalues $> poly(\rho, \frac{1}{d})$, then w.p. $1 - \exp(-r)$ (over perturbation of \tilde{a}), $\tilde{a} \otimes \tilde{b}$ has large projection onto S.

> follows easily analyzing projection of a vector to a dim-*k* space

Structure in any subspace S

Suppose: Choose Π_S first $\sqrt{d} \times \sqrt{d}$ "blocks" in Π_S were orthogonal...

 $\Pi_{S}(\tilde{b})|_{\sqrt{d}} =$ (restricted to \sqrt{d} cols)

- Entry (i,j) is: $\langle v_{i,j}, b + \varepsilon
 angle$
- Translated i.i.d. Gaussian matrix!

has many big eigenvalues

Finding Structure in any subspace S

Main claim: every $c. d^2$ dimensional space *S* has $\sim \sqrt{d}$ vectors with such a structure..

Property: picked blocks (*d* dim vectors) have "reasonable" component orthogonal to span of rest.

Earlier argument goes through even with blocks not fully orthogonal!

Main claim (sketch)..

Idea: obtain "good" columns one by one...

crucially use the fact that we have a $\Omega(d^2)$ dim subspace

- Show there exists a block with many linearly independent "choices"
- Fix some choices and argue the same property holds, ...

Q.E.D.

Generalization: similar result holds for higher order products, implies main result.

• Uses a delicate inductive argument

Summary

- Smoothed Analysis for Learning Probabilistic models.
- Polynomial time Algorithms in Overcomplete settings:

Flattening gets beyond full-rank conditions:
 Plug into results on Spectral Learning of Probabilistic models

Future Directions

Better Robustness to Errors

- Modelling errors?
- Tensor decomposition algorithms that more robust to errors ? promise: [Barak-Kelner-Steurer'14] using Lasserre hierarchy

Better dependence on rank k vs dim d (esp. 3 tensors)

• Next talk by Anandkumar: Random/ Incoherent decompositions

Better guarantees using Higher-order moments

• Better bounds w.r.t. smallest singular value ?

Smoothed Analysis for other Learning problems ?

Thank You!

Questions?